BenchmarkXPRT Blog banner

Tag Archives: ML

Web APIs: Possible paths for the AI-focused WebXPRT 4 auxiliary workload

In our last blog post, we discussed one of the major decision points we’re facing as we work on what we hope will be the first new AI-focused WebXPRT 4 auxiliary workload: choosing a Web AI framework. In today’s blog, we’re discussing another significant decision that we need to make for the future workload’s development path: choosing a web API.

Many of you are familiar with the concept of an application programming interface (API). Simply put, APIs implement sets of software rules, tools, and/or protocols that serve as intermediaries that make it possible for different computer programs or components to communicate with each other. APIs simplify many development tasks for programmers and provide standardized ways for applications to share data, functions, and system resources.

Web APIs fulfill the intermediary role of an API—through HTTP-based communication—for web servers (on the server side) or web browsers (on the client side). Client-side web APIs make it possible for browser-based applications to expand browser functionality. They execute the kinds of JavaScript, HTML5, and WebAssembly (Wasm) workloads—among other examples—that support the wide variety of browser extensions many of us use every day. WebXPRT uses those types of browser-based workloads to evaluate system performance. To lay a solid foundation for the first future browser-based AI workload, we need to choose a web API that will be compatible with WebXPRT and the Web AI framework and AI inference workload(s) we ultimately choose.

Currently, there are three main web API paths for running AI inference in a web browser: Web Neural Network (WebNN), Wasm, and WebGPU. These three web technologies are in various stages of development and standardization. Each has different levels of support within the major browsers. Here are basic overviews of each of the three options, as well as a few of our thoughts on the benefits and limitations that each may bring to the table for a future WebXPRT AI workload:

  • WebNN is a JavaScript API that enables developers to directly execute machine learning (ML) tasks on neural networks within web-based applications. WebNN makes it easier to integrate ML models into web apps, and it allows web apps to leverage the power of neural processing units (NPUs). WebNN has a lot going for it. It’s hardware-agnostic and works with various ML frameworks. It’s likely to be a major player in future browser-based inference applications. However, as a web standard, WebNN is still in the development stage and is only available in developer previews for Chromium-based browsers. Full default WebNN support could take a year or more.
  • Wasm is a binary instruction format that works across all modern browsers. Wasm provides a sandboxed environment that operates at near-native speeds and takes advantage of common hardware specs across platforms. Wasm’s capabilities offer web developers a great deal of flexibility for running complex client applications in the browser. Simply put, Wasm can help developers adapt their existing code for additional platforms and browser-based applications without requiring extensive code rewrites. Wasm’s flexibility and cross-platform compatibility is one of the reasons that we’ve already made use of Wasm in two existing WebXPRT 4 workloads that feature AI tasks: Organize Album using AI, and Encrypt Notes and OCR Scan. Wasm can also work together with other web APIs, such as WebGPU.
  • WebGPU enables web-based applications to directly access the graphics rendering and computational capabilities of a system’s GPU. The parallel computational abilities of GPUs make them especially well-suited to efficiently handle some of the demands of AI inference workloads, including image-based GenAI workloads or large language models. Google Chrome and Microsoft Edge currently support WebGPU, and it’s available in Safari through a tech preview.

Right now, we don’t think that WebNN will be fully out of the development phase in time to serve as our go-to web API for a new WebXPRT AI workload. Wasm and/or WebGPU appear to our best options for now. When WebNN is fully baked and available in mainstream browsers, it’s possible that we could port any existing Wasm- or WebGPU-based WebXPRT AI workloads to WebNN, which may open the possibility of cross-platform browser-based NPU performance comparisons.

All that said and as we mentioned in our previous post about Web AI frameworks, we have not made any final decisions about a web API or any aspect of the future workload. We’re still in the early stages of this project. We want your input.

If this discussion has sparked web AI ideas that you think would benefit the process, or if you have feedback you’d like to share, please feel free to contact us!

Justin

Web AI frameworks: Possible paths for the AI-focused WebXPRT 4 auxiliary workload

A few months ago, we announced that we’re moving forward with the development of a new auxiliary WebXPRT 4 workload focused on local, browser-side AI technology. Local AI has many potential benefits, and it now seems safe to say that it will be a common fixture of everyday life for many people in the future. As the growth of browser-based inference technology picks up steam, our goal is to equip WebXPRT 4 users with the ability to quickly and reliably evaluate how well devices can handle substantial local inference tasks in the browser.

To reach our goal, we’ll need to make many well-researched and carefully considered decisions along the development path. Throughout the decision-making process, we’ll be balancing our commitment to core XPRT values, such as ease of use and widespread compatibility, with the practical realities of working with rapidly changing emergent technologies. In today’s blog, we’re discussing one of the first decision points that we face—choosing a Web AI framework.

AI frameworks are suites of tools and libraries that serve as building blocks for developers to create new AI-based models and apps or integrate existing AI functions in custom ways. AI frameworks can be commercial, such as OpenAI, or open source, such as Hugging Face, PyTorch, and TensorFlow. Because the XPRTs are available at no cost for users and we publish our source code, open-source frameworks are the right choice for WebXPRT.

Because the new workload will focus on locally powered, browser-based inference tasks, we also need to choose an AI framework that has browser integration capabilities and does not rely on server-side computing. These types of frameworks—called Web AI—use JavaScript (JS) APIs and other web technologies, such as WebAssembly and WebGPU, to run machine learning (ML) tasks on a device’s CPU, GPU, or NPU.

Several emerging Web AI frameworks may provide the compatibility and functionality we need for the future WebXPRT workload. Here are a few that we’re currently researching:

  • ONNX Runtime Web: Microsoft and other partners developed the Open Neural Network Exchange (ONNX) as an open standard for ML models. With available tools, users can convert models from several AI frameworks to ONNX, which can then be used by ONNX Runtime Web. ONNX Runtime Web allows developers to leverage the broad compatibility of ONNX-formatted ML models—including pre-trained vision, language, and GenAI models—in their web applications.
  • Transformers.js: Transformers.js, which uses ONNX Runtime Web, is a JS library that allows users to run AI models from the browser and offline. Transformers.js supports language, computer vision, and audio ML models, among others.
  • MediaPipe: Google developed MediaPipe as a way for developers to adapt TensorFlow-based models for use across many platforms in real-time on-device inference applications such as face detection and gesture recognition. MediaPipe is particularly useful for inference work in images, videos, and live streaming.
  • TensorFlow.js: TensorFlow has been around for a long time, and the TensorFlow ecosystem provides users with a broad variety of models and datasets. TensorFlow is an end-to-end ML solution—training to inference—but with available pre-trained models, developers can focus on inference. TensorFlow.js is an open-source JS library that helps developers integrate TensorFlow with web apps.

We have not made final decisions about a Web AI framework or any aspect of the future workload. We’re still in the research, discussion, and experimentation stages of development, but we want to be transparent with our readers about where we are in the process. In future blog posts, we’ll discuss some of the other major decision points in play.

Most of all, we invite you to join us in these discussions, make recommendations, and give us any other feedback or suggestions you may have, so please feel free to share your thoughts!

Justin

The AIXPRT learning tool is now live (and a CloudXPRT version is on the way)!

We’re happy to announce that the AIXPRT learning tool is now live! We designed the tool to serve as an information hub for common AIXPRT topics and questions, and to help tech journalists, OEM lab engineers, and everyone who is interested in AIXPRT find the answers they need in as little time as possible.

The tool features four primary areas of content:

  • The Q&A section provides quick answers to the questions we receive most from testers and the tech press.
  • The AIXPRT: the basics section describes specific topics such as the benchmark’s toolkits, networks, workloads, and hardware and software requirements.
  • The testing and results section covers the testing process, metrics, and how to publish results.
  • The AI/ML primer provides brief, easy-to-understand definitions of key AI and ML terms and concepts for those who want to learn more about the subject.

The first screenshot below shows the home screen. To show how some of the popup information sections appear, the second screenshot shows the Inference tasks (workloads) entry in the AI/ML Primer section. 

We’re excited about the new AIXPRT learning tool, and we’re also happy to report that we’re working on a version of the tool for CloudXPRT. We hope to make the CloudXPRT tool available early next year, and we’ll post more information in the blog as we get closer to taking it live.

If you have any questions about the tool, please let us know!

Justin

News on AIXPRT development

(more…)

Check out the other XPRTs:

Forgot your password?