BenchmarkXPRT Blog banner

Tag Archives: machine learning

Potential web technology additions for WebXPRT 4

A few months ago, we invited readers to send in their thoughts and ideas about web technologies and workload scenarios that may be a good fit for the next WebXPRT. We’d like to share a few of those ideas today, and we invite you to continue to send your feedback. We’re approaching the time when we need to begin firming up plans for a WebXPRT 4 development cycle in 2021, but there’s still plenty of time for you to help shape the future of the benchmark.

One of the most promising ideas for WebXPRT 4 is the potential addition of one or more WebAssembly (WASM) workloads. WASM is a low-level, binary instruction format that works across all modern browsers. It offers web developers a great deal of flexibility and provides the speed and efficiency necessary for running complex client applications in the browser. WASM enables a variety of workload scenario options, including gaming, video editing, VR, virtual machines, image recognition, and interactive educational content.

In addition, the Chrome team is dropping Portable Native Client (PNaCL) support in favor of WASM, which is why we had to remove a PNaCL workload when updating CrXPRT 2015 to CrXPRT 2. We generally model CrXPRT workloads on existing WebXPRT workloads, so familiarizing ourselves with WASM could ultimately benefit more than one XPRT benchmark.

We are also considering adding a web-based machine learning workload with TensorFlow for JavaScript (TensorFlow.js). TensorFlow.js offers pre-trained models for a wide variety of tasks including image classification, object detection, sentence encoding, natural language processing, and more. We could also use this technology to enhance one of WebXPRT’s existing AI-themed workloads, such as Organize Album using AI or Encrypt Notes and OCR Scan.

Other ideas include using a WebGL-based workload to target GPUs and investigating ways to incorporate a battery life test. What do you think? Let us know!

Justin

Adapting to a changing tech landscape

The BenchmarkXPRT Development Community started almost 10 years ago with the development of the High Definition Experience & Performance Ratings Test, also known as HDXPRT. Back then, we distributed the benchmark to interested parties by mailing out physical DVDs. We’ve come a long way since then, as testers now freely and easily access six XPRT benchmarks from our site and major app stores.

Developers, hardware manufacturers, and tech journalists—the core group of XPRT testers—work within a constantly changing tech landscape. Because of our commitment to providing those testers with what they need, the XPRTs grew as we developed additional benchmarks to expand the reach of our tools from PCs to servers and all types of notebooks, Chromebooks, and mobile devices.

As today’s tech landscape continues to evolve at a rapid pace, our desire to play an active role in emerging markets continues to drive us to expand our testing capabilities into areas like machine learning (AIXPRT) and cloud-first applications (CloudXPRT). While these new technologies carry the potential to increase efficiency, improve quality, and boost the bottom line for companies around the world, it’s often difficult to decide where and how to invest in new hardware or services. The ever-present need for relevant and reliable data is the reason many organizations use the XPRTs to help make confident choices about their company’s future tech.

We just released a new video that helps to explain what the XPRTs provide and how they can play an important role in a company’s tech purchasing decisions. We hope you’ll check it out!

We’re excited about the continued growth of the XPRTs, and we’re eager to meet the challenges of adapting to the changing tech landscape. If you have any questions about the XPRTs or suggestions for future benchmarks, please let us know!

Justin

More details about CloudXPRT’s workloads

About a month ago, we posted an update on the CloudXPRT development process. Today, we want to provide more details about the three workloads we plan to offer in the initial preview build:

  • In the web-tier microservices workload, a simulated user logs in to a web application that does three things: provides a selection of stock options, performs Monte-Carlo simulations with those stocks, and presents the user with options that may be of interest. The workload reports performance in transactions per second, which testers can use to directly compare IaaS stacks and to evaluate whether any given stack is capable of meeting service-level agreement (SLA) thresholds.
  • The machine learning (ML) training workload calculates XGBoost model training time. XGBoost is a gradient-boosting framework  that data scientists often use for ML-based regression and classification problems. The purpose of the workload in the context of CloudXPRT is to evaluate how well an IaaS stack enables XGBoost to speed and optimize model training. The workload reports latency and throughput rates. As with the web-tier microservices workload, testers can use this workload’s metrics to compare IaaS stack performance and to evaluate whether any given stack is capable of meeting SLA thresholds.
  • The AI-themed container scaling workload starts up a container and uses a version of the AIXPRT harness to launch Wide and Deep recommender system inference tasks in the container. Each container represents a fixed amount of work, and as the number of Wide and Deep jobs increases, CloudXPRT launches more containers in parallel to handle the load. The workload reports both the startup time for the containers and the Wide and Deep throughput results. Testers can use this workload to compare container startup time between IaaS stacks; optimize the balance between resource allocation, capacity, and throughput on a given stack; and confirm whether a given stack is suitable for specific SLAs.

We’re continuing to move forward with CloudXPRT development and testing and hope to add more workloads in subsequent builds. Like most organizations, we’ve adjusted our work patterns to adapt to the COVID-19 situation. While this has slowed our progress a bit, we still hope to release the CloudXPRT preview build in April. If anything changes, we’ll let folks know as soon as possible here in the blog.

If you have any thoughts or comments about CloudXPRT workloads, please feel free to contact us.

Justin

AIXPRT’s unique development path

With four separate machine learning toolkits on their own development schedules, three workloads, and a wide range of possible configurations and use cases, AIXPRT has more moving parts than any of the XPRT benchmark tools to date. Because there are so many different components, and because we want AIXPRT to provide consistently relevant evaluation data in the rapidly evolving AI and machine learning spaces, we anticipate a cadence of AIXPRT updates in the future that will be more frequent than the schedules we’ve used for other XPRTs in the past. With that expectation in mind, we want to let AIXPRT testers know that when we release an AIXPRT update, they can expect minimized disruption, consideration for their testing needs, and clear communication.

Minimized disruption

Each AIXPRT toolkit (Intel OpenVINO, TensorFlow, NVIDIA TensorRT, and Apache MXNet) is on its own development schedule, and we won’t always have a lot of advance notice when new versions are on the way. Hypothetically, a new version of OpenVINO could release one month, and a new version of TensorRT just two months later. Thankfully, the modular nature of AIXPRT’s installation packages ensures that we won’t need to revise the entire AIXPRT suite every time a toolkit update goes live. Instead, we’ll update each package individually when necessary. This means that if you only test with a single AIXPRT package, updates to the other packages won’t affect your testing. For us to maintain AIXPRT’s relevance, there’s unfortunately no way to avoid all disruption, but we’ll work to keep it to a minimum.

Consideration for testers

As we move forward, when software compatibility issues force us to update an AIXPRT package, we may discover that the update has a significant effect on results. If we find that results from the new package are no longer comparable to those from previous tests, we’ll share the differences that we’re seeing in our lab. As always, we will use documentation and versioning to make sure that testers know what to expect and  that there’s no confusion about which package to use.

Clear communication

When we update any package, we’ll make sure to communicate any updates in the new build as clearly as possible. We’ll document all changes thoroughly in the package readmes, and we’ll talk through significant updates here in the blog. We’re also available to answer questions about AIXPRT and any other XPRT-related topic, so feel free to ask!

Justin

AIXPRT is here!

We’re happy to announce that AIXPRT is now available to the public! AIXPRT includes support for the Intel OpenVINO, TensorFlow, and NVIDIA TensorRT toolkits to run image-classification and object-detection workloads with the ResNet-50 and SSD-MobileNet v1networks, as well as a Wide and Deep recommender system workload with the Apache MXNet toolkit. The test reports FP32, FP16, and INT8 levels of precision.

To access AIXPRT, visit the AIXPRT download page. There, a download table displays the AIXPRT test packages. Locate the operating system and toolkit you wish to test and click the corresponding Download link. For detailed installation instructions and information on hardware and software requirements for each package, click the package’s Readme link. If you’re not sure which AIXPRT package to choose, the AIXPRT package selector tool will help to guide you through the selection process.

In addition, the Helpful Info box on AIXPRT.com contains links to a repository of AIXPRT resources, as well links to XPRT blog discussions about key AIXPRT test configuration settings such as batch size and precision.

We hope AIXPRT will prove to be a valuable tool for you, and we’re thankful for all the input we received during the preview period! If you have any questions about AIXPRT, please let us know.

AIXPRT Community Preview 3 is here!

We’re happy to announce that the AIXPRT Community Preview 3 (CP3) is now available! As we discussed in last week’s blog, testers can expect three significant changes in AIXPRT CP3:

  • We updated support for the Ubuntu test packages from Ubuntu version 16.04 LTS to version 18.04 LTS.
  • We added TensorRT test packages for Windows and Ubuntu. Previously, AIXPRT testers could test only the TensorFlow variant of TensorRT. Now, they can use TensorRT to test systems with NVIDIA GPUs.
  • We added the Wide and Deep recommender system workload with the MXNet toolkit for Ubuntu systems.


To access AIXPRT CP3, click this access link and submit the brief information form unless you’ve already done so for CP2. You will then gain access to the AIXPRT community preview page. (If you’re not already a BenchmarkXPRT Development Community member, we’ll contact you with more information about your membership.)

On the community preview page, a download table displays the currently available AIXPRT CP3 test packages. Locate the operating system and toolkit you wish to test, and click the corresponding Download link. For detailed installation instructions and information on hardware and software requirements for each package, click the corresponding Readme link. Instead of providing installation guide PDFs as we did for CP2, we are now directing testers to a public GitHub repository. The repository contains the installation readmes for all the test packages, as well as a selection of alternative test configuration files. We’ll discuss the alternative configuration files in more detail in a future blog post.

Note: Those who have access to the existing AIXPRT GitHub repository will be able to access CP3 in the same way as previous versions.

We’ll continue to keep everyone up to date with AIXPRT news here in the blog. If you have any questions or comments, please let us know.

Justin

Check out the other XPRTs:

Forgot your password?