BenchmarkXPRT Blog banner

Tag Archives: benchmark

AIXPRT is here!

We’re happy to announce that AIXPRT is now available to the public! AIXPRT includes support for the Intel OpenVINO, TensorFlow, and NVIDIA TensorRT toolkits to run image-classification and object-detection workloads with the ResNet-50 and SSD-MobileNet v1networks, as well as a Wide and Deep recommender system workload with the Apache MXNet toolkit. The test reports FP32, FP16, and INT8 levels of precision.

To access AIXPRT, visit the AIXPRT download page. There, a download table displays the AIXPRT test packages. Locate the operating system and toolkit you wish to test and click the corresponding Download link. For detailed installation instructions and information on hardware and software requirements for each package, click the package’s Readme link. If you’re not sure which AIXPRT package to choose, the AIXPRT package selector tool will help to guide you through the selection process.

In addition, the Helpful Info box on AIXPRT.com contains links to a repository of AIXPRT resources, as well links to XPRT blog discussions about key AIXPRT test configuration settings such as batch size and precision.

We hope AIXPRT will prove to be a valuable tool for you, and we’re thankful for all the input we received during the preview period! If you have any questions about AIXPRT, please let us know.

Coming soon: An interactive AIXPRT selector tool

AI workloads are now relevant to all types of hardware, from servers to laptops to IOT devices, so we intentionally designed AIXPRT to support a wide range of potential hardware, toolkit, and workload configurations. This approach provides AIXPRT testers with a tool that is flexible enough to adapt to a variety of environments. The downside is that the number of options makes it fairly complicated to figure out which AIXPRT download package suits your needs.

To help testers navigate this complexity, we’ve been working on a new interactive selector tool. The tool is not yet live, but the screenshots and descriptions below provide a preview of what’s to come.

The tool will include drop-down menus for the key factors that go into determining the correct AIXPRT download package, along with a description of the options. Users can proceed in any order but will need to make a selection for each category. Since not all combinations work together, each selection the user makes will eliminate some of the options in the remaining categories.

AIXPRT user guide snip 1

After a user selects an option, a check mark appears on the category icon, and the selection for that category appears in the category box (e.g., TensorFlow in the Toolkit category). This shows users which categories they’ve completed and the selections they’ve made. After a user selects options in more than one category, a Start over button appears in the lower-left corner. Clicking this button clears all existing selections and provides users with a clean slate.

Once every category is complete, a Download button appears in the lower-right corner. When you click this, a popup appears that provides a link for the correct download package and associated readme file.

AIXPRT user guide snip 2

We hope the selector tool will help make the AIXPRT download and installation process easier for those who are unfamiliar with the benchmark. Testers who already know exactly which package they need will be able to bypass the tool and go directly to a download table.

The tool will debut with the AIXPRT 1.0 GA in the next few days, and we’ll let everyone know when that happens! If you have any questions or comments about AIXPRT, please let us know.

Justin

A necessary update for HDXPRT 4

If you tried to install HDXPRT 4 over the past few days, you likely noticed that Adobe Photoshop Elements 2018, the version the Edit Photos scenario uses, is no longer available on the Adobe Photoshop Elements download page. In the past, Adobe has provided access to multiple older versions of their software for some time after a new release, but they appear to be moving away from that practice. We have not yet found an alternative way for users to download PSE 2018 on a trial basis. Unfortunately, this means testers will be temporarily unable to successfully complete the HDXPRT 4 installation process.

We’re adapting the scripts in the HDXPRT 4 Edit Photos scenario to use PSE 2020. As soon as we finish, we’ll start testing, with a focus on determining whether the change significantly affects the individual workload or overall scores.

We apologize for the inconvenience that this issue causes for HDXPRT testers. We’ll continue to update the community here in the blog about our progress with the new build. If you have any questions or comments, please let us know.

Justin

AIXPRT Community Preview 3 is here!

We’re happy to announce that the AIXPRT Community Preview 3 (CP3) is now available! As we discussed in last week’s blog, testers can expect three significant changes in AIXPRT CP3:

  • We updated support for the Ubuntu test packages from Ubuntu version 16.04 LTS to version 18.04 LTS.
  • We added TensorRT test packages for Windows and Ubuntu. Previously, AIXPRT testers could test only the TensorFlow variant of TensorRT. Now, they can use TensorRT to test systems with NVIDIA GPUs.
  • We added the Wide and Deep recommender system workload with the MXNet toolkit for Ubuntu systems.


To access AIXPRT CP3, click this access link and submit the brief information form unless you’ve already done so for CP2. You will then gain access to the AIXPRT community preview page. (If you’re not already a BenchmarkXPRT Development Community member, we’ll contact you with more information about your membership.)

On the community preview page, a download table displays the currently available AIXPRT CP3 test packages. Locate the operating system and toolkit you wish to test, and click the corresponding Download link. For detailed installation instructions and information on hardware and software requirements for each package, click the corresponding Readme link. Instead of providing installation guide PDFs as we did for CP2, we are now directing testers to a public GitHub repository. The repository contains the installation readmes for all the test packages, as well as a selection of alternative test configuration files. We’ll discuss the alternative configuration files in more detail in a future blog post.

Note: Those who have access to the existing AIXPRT GitHub repository will be able to access CP3 in the same way as previous versions.

We’ll continue to keep everyone up to date with AIXPRT news here in the blog. If you have any questions or comments, please let us know.

Justin

Understanding the basics of AIXPRT precision settings

A few weeks ago, we discussed one of AIXPRT’s key configuration variables, batch size. Today, we’re discussing another key variable: the level of precision. In the context of machine learning (ML) inference, the level of precision refers to the computer number format (FP32, FP16, or INT8) representing the weights (parameters) a network model uses when performing the calculations necessary for inference tasks.

Higher levels of precision for inference tasks help decrease the number of false positives and false negatives, but they can increase the amount of time, memory bandwidth, and computational power necessary to achieve accurate results. Lower levels of precision typically (but not always) enable the model to process inputs more quickly while using less memory and processing power, but they can allow a degree of inaccuracy that is unacceptable for certain real-world applications.

For example, a high level of precision may be appropriate for computer vision applications in the medical field, where the benefits of hyper-accurate object detection and classification far outweigh the benefit of saving a few milliseconds. On the other hand, a low level of precision may work well for vision-based sensors in the security industry, where alert time is critical and monitors simply need to know if an animal or a human triggered a motion-activated camera.

FP32, FP16, and INT8

In AIXPRT, we can instruct the network models to use FP32, FP16, or INT8 levels of precision:

  • FP32 refers to single-precision (32-bit) floating point format, a number format that can represent an enormous range of values with a high degree of mathematical precision. Most CPUs and GPUs handle 32-bit floating point operations very efficiently, and many programs that use neural networks, including AIXPRT, use FP32 precision by default.
  • FP16 refers to half-precision (16-bit) floating point format, a number format that uses half the number of bits as FP32 to represent a model’s parameters. FP16 is a lower level of precision than FP32, but it still provides a great enough numerical range to successfully perform many inference tasks. FP16 often requires less time than FP32, and uses less memory.
  • INT8 refers to the 8-bit integer data type. INT8 data is better suited for certain types of calculations than floating point data, but it has a relatively small numeric range compared to FP16 or FP32. Depending on the model, INT8 precision can significantly improve latency and throughput, but there may be a loss of accuracy. INT8 precision does not always trade accuracy for speed, however. Researchers have shown that a process called quantization (i.e., approximating continuous values with discrete counterparts) can enable some networks, such as ResNet-50, to run INT8 precision without any significant loss of accuracy.

Configuring precision in AIXPRT

The screenshot below shows part of a sample config file, the same sample file we used for our batch size discussion. The value in the “precision” row indicates the precision setting. This test configuration would run tests using INT8. To change the precision, a tester simply replaces that value with “fp32” or “fp16” and saves the changes.

Config_snip

Note that while decreasing the precision from FP32 to FP16 or INT8 often results in larger throughput numbers and faster inference speeds overall, this is not always the case. Many other factors can affect ML performance, including (but not limited to) the complexity of the model, the presence of specific ML optimizations for the hardware under test, and any inherent limitations of the target CPU or GPU.

As with most AI-related topics, the details of model precision are extremely complex, and it’s a hot topic in cutting edge AI research. You don’t have to be an expert, however, to understand how changing the level of precision can affect AIXPRT test results. We hope that today’s discussion helped to make the basics of precision a little clearer. If you have any questions or comments, please feel free to contact us.

Justin

Planning for the next TouchXPRT

We’re in the very early planning stages for the next version of TouchXPRT, and we’d love to hear any suggestions you may have. What do you like or dislike about TouchXPRT? What features do you hope to see in a new version?

For those who are unfamiliar with TouchXPRT, it’s a benchmark for evaluating the performance of Windows 10 devices. TouchXPRT 2016, the most recent version, runs tests based on five everyday scenarios (Beautify Photos, Blend Photos, Convert Videos for Sharing, Create Music Podcast, and Create Slideshow from Photos) and produces results for each of the five scenarios plus an overall score. The benchmark is available two ways: as a Universal Windows App in the Microsoft Store and as a sideload installer package on TouchXPRT.com.

When we begin work on a new version of any benchmark, one of the first steps we take is to assess its workloads to determine whether they will provide value during the years ahead. This step involves evaluating whether to update test content such as photos and videos to more contemporary file resolutions and sizes, and can also involve removing workloads or adding completely new ones. Should we keep the TouchXPRT workloads listed above or investigate other use cases? Should we research potential AI-related workloads? What do you think?

As we did with MobileXPRT 3 and HDXPRT 4 earlier this year, we’re also planning to update the TouchXPRT UI to improve the look of the benchmark and make it easier to use. We’re just at the beginning of this process, so any feedback you send has a chance to really shape the future of the benchmark.

On a related note, TouchXPRT 2016 testers who use the installer package available on TouchXPRT.com may have noticed that the package has a new file name (TX2016.6.52.0_8.19.19.zip). Microsoft requires developers to assign a security certificate to all sideload apps, and the new TouchXPRT file contains a refreshed certificate. We did not change the benchmark in any other way, so scores from this package are comparable to previous TouchXPRT 2016 scores.

Justin

Check out the other XPRTs:

Forgot your password?