BenchmarkXPRT Blog banner

Tag Archives: battery life

The XPRTs: What would you like to see in 2025?

If you’re a new follower of the XPRT family of benchmarks, you may not be aware of one of the characteristics of the XPRTs that sets them apart from many benchmarking efforts—our openness and commitment to valuing the feedback of tech journalists, lab engineers, and anyone else that uses the XPRTs on a regular basis. That feedback helps us to ensure that as the XPRTs grow and evolve, the resources we offer will continue to meet the needs of those that use them.

In the past, user feedback has influenced specific aspects of our benchmarks, such as the length of test runs, UI features, results presentation, and the addition or subtraction of specific workloads. More broadly, we have also received suggestions for entirely new XPRTs and ways we might target emerging technologies or industry use cases.

As we look forward to what’s in store for the XPRTs in 2025, we’d love to hear your ideas about new XPRTs—or new features for existing XPRTs. Are you aware of hardware form factors, software platforms, new technologies, or prominent applications that are difficult or impossible to evaluate using existing performance benchmarks? Should we incorporate additional or different technologies into existing XPRTs through new workloads? Do you have suggestions for ways to improve any of the XPRTs or XPRT-related tools, such as results viewers?

We’re especially interested in your thoughts about the next steps for WebXPRT. If our recent blog posts about the potential addition of an AI-focused auxiliary workload, what a WebXPRT battery life test would entail, or possible WebAssembly-based test scenarios have piqued your interest, we’d love to hear your thoughts!

We’re genuinely interested in your answers to these questions and any other ideas you have, so please feel free to contact us. We look forward to hearing your thoughts and working together to figure out how they could help shape the XPRTs in 2025!

Justin

Thinking through a potential WebXPRT 4 battery life test

In recent blog posts, we’ve discussed some of the technical considerations we’re working through on our path toward a future AI-focused WebXPRT 4 auxiliary workload. While we’re especially excited about adding to WebXPRT 4’s AI performance evaluation capabilities, AI is not the only area of potential WebXPRT 4 expansion that we’ve thought about. We’re always open to hearing suggestions for ways we can improve WebXPRT 4, including any workload proposals you may have. Several users have asked about the possibility of a WebXPRT 4 battery life test, so today we’ll discuss what one might look like and some of the challenges we’d have to overcome to make it a reality.

Battery life tests fall into two primary categories: simple rundown tests and performance-weighted tests. Simple rundown tests measure battery life during extreme idle periods and loops of movie playbacks, etc., but do not reflect the wide-ranging mix of activities that characterize a typical day for most users. While they can be useful for performing very specific apples-to-apples comparisons, these tests don’t always give consumers an accurate estimate of the battery life they would experience in daily use.

In contrast, performance-weighted battery life tests, such as the one in CrXPRT 2, attempt to reflect real-world usage. The CrXPRT battery life test simulates common daily usage patterns for Chromebooks by including all the productivity workloads from the performance test, plus video playback, audio playback, and gaming scenarios. It also includes periods of wait/idle time. We believe this mixture of diverse activity and idle time better represents typical real-life behavior patterns. This makes the resulting estimated battery life much more helpful for consumers who are trying to match a device’s capabilities with their real-world needs.

From a technical standpoint, WebXPRT’s cross-platform nature presents us with several challenges that we did not face while developing the CrXPRT battery life test for ChromeOS. While the WebXPRT performance tests run in almost any browser, cross-browser differences and limitations in battery life reporting may restrict any future battery life test to a single browser or browser family. For instance, with the W3C Battery Status API, we can currently query battery status data from non-mobile Chromium-based browsers (e.g., Chrome, Edge, Opera, etc.), but not from Firefox or Safari. If a WebXPRT 4 battery life test supported only a single browser family, such as Chromium-based browsers, would you still be interested in using it? Please let us know.

A browser-based battery life workflow also presents other challenges that we do not face in native client applications, such as CrXPRT:

  • A browser-based battery life test may require the user to check the starting and ending battery capacities, with no way for the app to independently verify data accuracy.
  • The battery life test could require more babysitting in the event of network issues. We can catch network failures and try to handle them by reporting periods of network disconnection, but those interruptions could influence the battery life duration.
  • The factors above could make it difficult to achieve repeatability. One way to address that problem would be to run the test in a standardized lab environment with a steady internet connection, but a long list of standardized environmental requirements would make the battery life test less attractive and less accessible to many testers.

We’re not sharing these thoughts to make a WebXPRT 4 battery life test seem like an impossibility. Rather, we want to offer our perspective on what the test might look like and describe some of the challenges and considerations in play. If you have thoughts about battery life testing, or experience with battery life APIs in one or more of the major browsers, we’d love to hear from you!

Justin

A note about CrXPRT 2

Recent visitors to CrXPRT.com may have seen a notice that encourages visitors to use WebXPRT 4 instead of CrXPRT 2 for performance testing on high-end Chromebooks. The notice reads as follows:

NOTE: Chromebook technology has progressed rapidly since we released CrXPRT 2, and we’ve received reports that some CrXPRT 2 workloads may not stress top-bin Chromebook processors enough to give the necessary accuracy for users to compare their performance. So, for the latest test to compare the performance of high-end Chromebooks, we recommend using WebXPRT 4.

We made this recommendation because of the evident limitations of the CrXPRT 2 performance workloads when testing newer high-end hardware. CrXPRT 2 itself is not that old (2020), but when we created the CrXPRT 2 performance workloads, we started with a core framework of CrXPRT 2015 performance workloads. In a similar way, we built the CrXPRT 2015 workloads on a foundation of WebXPRT 2015 workloads. At the time, the harness and workload structures we used to ensure WebXPRT 2015’s cross-browser capabilities provided an excellent foundation that we could adapt for our new ChromeOS benchmark. Consequently, CrXPRT 2 is a close developmental descendant of WebXPRT 2015. Some of the legacy WebXPRT 2015/CrXPRT 2 workloads do not stress current high-end processors—a limitation that prevents effective performance testing differentiation—nor do they engage the latest web technologies.

In the past, the Chromebook market skewed heavily toward low-cost devices with down-bin, inexpensive processors, making this limitation less of an issue. Now, however, more Chromebooks offer top-bin processors on par with traditional laptops and workstations. Because of the limitations of the CrXPRT 2 workloads, we now recommend WebXPRT 4 for both cross-browser and ChromeOS performance testing on the latest high-end Chromebooks. WebXPRT 4 includes updated test content, newer JavaScript tools and libraries, modern WebAssembly workloads, and additional Web Workers tasks that cover a wide range of performance requirements.

While CrXPRT 2 continues to function as a capable performance and battery life comparison test for many ChromeOS devices, WebXPRT 4 is a more appropriate tool to use with new high-end devices. If you haven’t yet used WebXPRT 4 for Chromebook comparison testing, we encourage you to give it a try!

If you have any questions or concerns about CrXPRT 2 or WebXPRT 4, please don’t hesitate to ask!

Justin

The role of potential WebXPRT 4 auxiliary workloads

As we mentioned in our most recent blog post, we’re seeking suggestions for ways to improve WebXPRT 4. We’re open to the prospect of adding both non-workload features and new auxiliary tests, e.g., a battery life or WebGPU-based graphics test scenario.

To prevent any confusion among WebXPRT 4 testers, we want to reiterate that any auxiliary workloads we might add will not affect existing WebXPRT 4 subtest or overall scores in any way. Auxiliary tests would be experimental or targeted workloads that run separately from the main test and produce their own scores. Current and future WebXPRT 4 results will be comparable to one another, so users who’ve already built a database of WebXPRT 4 scores will not have to retest their devices. Any new tests will be add-ons that allow us to continue expanding the rapidly growing body of published WebXPRT 4 test results while making the benchmark even more valuable to users overall.

If you have any thoughts about potential browser performance workloads, or any specific web technologies that you’d like to test, please let us know.

Justin

How we evaluate new WebXPRT workload proposals

A key value of the BenchmarkXPRT Development Community is our openness to user feedback. Whether it’s positive feedback about our benchmarks, constructive criticism, ideas for completely new benchmarks, or proposed workload scenarios for existing benchmarks, we appreciate your input and give it serious consideration.

We’re currently accepting ideas and suggestions for ways we can improve WebXPRT 4. We are open to adding both non-workload features and new auxiliary tests, which can be experimental or targeted workloads that run separately from the main test and produce their own scores. You can read more about experimental WebXPRT 4 workloads here. However, a recent user question about possible WebGPU workloads has prompted us to explain the types of parameters that we consider when we evaluate a new WebXPRT workload proposal.

Community interest and real-life relevance

The first two parameters we use when evaluating a WebXPRT workload proposal are straightforward: are people interested in the workload and is it relevant to real life? We originally developed WebXPRT to evaluate device performance using the types of web-based tasks that people are likely to encounter daily, and real-life relevancy continues to be an important criterion for us during development. There are many technologies, functions, and use cases that we could test in a web environment, but only some of them are both relevant to common applications or usage patterns and likely to be interesting to lab testers and tech reviewers.

Maximum cross-platform support

Currently, WebXPRT runs in almost any web browser, on almost any device that has a web browser, and we would ideally maintain that broad level of cross-platform support when introducing new workloads. However, technical differences in the ways that different browsers execute tasks mean that some types of scenarios would be impossible to include without breaking our cross-platform commitment.

One reason that we’re considering auxiliary workloads with WebXPRT, e.g., a battery life rundown, is that those workloads would allow WebXPRT to offer additional value to users while maintaining the cross-platform nature of the main test. Even if a battery life test ran on only one major browser, it could still be very useful to many people.

Performance differentiation

Computer benchmarks such as the XPRTs exist to provide users with reliable metrics that they can use to gauge how well target platforms or technologies perform certain tasks. With a broadly targeted benchmark such as WebXPRT, if the workloads are so heavy that most devices can’t handle them, or so light that most devices complete them without being taxed, the results will have little to no use for OEM labs, the tech press, or independent users when evaluating devices or making purchasing decisions.

Consequently, with any new WebXPRT workload, we try to find a sweet spot in terms of how demanding it is. We want it to run on a wide range of devices—from low-end devices that are several years old to brand-new high-end devices and everything in between. We also want users to see a wide range of workload scores and resulting overall scores, so they can easily grasp the different performance capabilities of the devices under test.

Consistency and replicability

Finally, workloads should produce scores that consistently fall within an acceptable margin of error, and are easily to replicate with additional testing or comparable gear. Some web technologies are very sensitive to uncontrollable or unpredictable variables, such as internet speed. A workload that measures one of those technologies would be unlikely to produce results that are consistent and easily replicated.

We hope this post will be useful for folks who are contemplating potential new WebXPRT workloads. If you have any general thoughts about browser performance testing, or specific workload ideas that you’d like us to consider, please let us know.

Justin

The versatility of XPRT benchmarks

We’ve designed each of the XPRT benchmarks to assess the performance of specific types of devices in scenarios that mirror the ways consumers typically use those devices. While most XPRT benchmark users are interested in producing official overall scores, some members of the tech press have been using the XPRTs in unconventional, creative ways.

One example is the use of WebXPRT by Tweakers, a popular tech review site based in The Netherlands. (The site is in Dutch, so the Google Translate extension in Chrome was helpful for me.) As Tweakers uses WebXPRT to evaluate all kinds of consumer hardware, they also measure the sound output of each device. Tweakers then publishes the LAeq metric for each device, giving readers a sense of how loud a system may be, on average, while it performs common browser tasks.

If you’re interested in seeing Tweakers’ use of WebXPRT for sound output testing firsthand, check out their Apple MacBook Pro M2, HP Envy 34 All-in-One, and Samsung Galaxy Book 2 Pro reviews.

Other labs and tech publications have also used the XPRTs in unusual ways such as automating the benchmarks to run during screen burn-in tests or custom battery-life rundowns. If you’ve used any of the XPRT benchmarks in creative ways, please let us know! We are interested in learning more about your tests, and your experiences may provide helpful information that we can share with other XPRT users.

Justin

Check out the other XPRTs:

Forgot your password?