BenchmarkXPRT Blog banner

Category: WebXPRT

Looking for performance clues

We’ve written before about how the operating system and other software can influence test scores and even battery life. Benchmarks like the XPRTs provide overall results, but teasing out which factors affect those results may require some detective work. The key is to collect individual data points as evidence to what may be causing performance changes.

The Apple iOS 11 rollout last month is an excellent example of the effect of software on device performance. Angry tweets started almost immediately after the update, claiming that iOS 11 drained device batteries. iPhone users here at PT experienced similar issues. What was the cause of that performance drop? The hardware remained the same. So, did software cause the problem?

Less than a week after the rollout, Mashable published an explanation of possible causes. The article quotes research from mobile security firm Wandera showing that, for the 50,000 “moderate to heavy iPhone and iPad users” in the study, devices running iOS 11 burned through their battery at much faster rates than the same devices running iOS 10. They cite two possible causes:

    • devices often re-categorize the files stored on them for every new OS install, which may account for some of the battery issues.
    • many apps are not optimized for iOS 11 yet.

 

While these explanations make sense, with a little more digging, we could get closer to actually solving the mystery instead of guessing at the causes. After all, it is also possible that people are using iOS 11 differently from iOS 10. So, how could a dedicated sleuth investigate further? Anyone using benchmarks and hands-on testing to sift through various scenarios and configurations could get us closer to solving this mystery and any other software-based performance anomalies. But it’s a daunting task—changing only one variable at a time and recording the results is like pounding the streets and knocking on doors to solve a case.

In all likelihood, some combination of Apple iOS updates and application changes will improve the battery life for iOS 11. In the meantime, we wish we had an XPRT that could test battery life on iOS. Who knows, maybe some future version of WebXPRT will be able to help in future sleuthing.

Eric

Introducing the WebXPRT 2015 Processor Comparison Chart

Today, we’re excited to announce the WebXPRT 2015 Processor Comparison Chart, a new tool that makes it easier to access hundreds of PT-curated, real-world performance scores from a wide range of devices covering everything from TVs to phones to tablets to PCs.

The chart offers a quick way to browse and compare WebXPRT 2015 results grouped by processor. Unlike benchmark-score charts that may contain results from unknown sources, PT hand-selected each of the results from internal lab testing and reliable tech media sources. If we published multiple scores for an individual processor, the score presented in the chart will be an average of those scores. Users can hover over and click individual score bars for additional information about the test results and test sources for each processor.

WebXPRT proc chart capture

We think the WebXPRT Processor Comparison Chart will be a valuable resource for folks interested in performance testing and product evaluation, but the current iteration is only the beginning. We plan to add additional capabilities on a regular basis, such a detailed filtering and enhanced viewing and navigational options. It’s also possible that we may integrate other XPRT benchmarks down the road.

Most importantly, we want the chart to be a great asset for its users, and that’s where you come in. We’d love to hear your feedback on the features and types of data you’d like to see. If you have suggestions, please let us know!

Justin

Decisions, decisions

Back in April, we shared some of our initial ideas for a new version of WebXPRT, and work on the new benchmark is underway. Any time we begin the process of updating one of the XPRT benchmarks, one of the first decisions we face is how to improve workload content so it better reflects the types of technology average consumers use every day. Since benchmarks typically have a life cycle of two to four years, we want the benchmark to be relevant for at least the next couple of years.

For example, WebXPRT contains two photo-related workloads, Photo Effects and Organize Album. Photo Effects applies a series of effects to a set of photos, and Organize Album uses facial recognition technology to analyze a set of photos. In both cases, we want to use photos that represent the most relevant combination of image size, resolution, and data footprint possible. Ideally, the resulting image sizes and resolutions should differentiate processing speed on the latest systems, but not at the expense of being able to run reasonably on most current devices. We also have to confirm that the photos aren’t so large as to impact page load times unnecessarily.

The way this strategy works in practice is that we spend time researching hardware and operating system market share. Given that phones are the cameras that most people use, we look at them to help define photo characteristics. In 2017, the most widespread mobile OS is Android, and while reports vary depending on the metric used, the Samsung Galaxy S5 and Galaxy S7 are at or near the top of global mobile market share. For our purposes, the data tells us that choosing photo sizes and resolutions that mirror those of the Galaxy line is a good start, and a good chunk of Android users are either already using S7-generation technology, or will be shifting to new phones with that technology in the coming year. So, for the next version of WebXPRT, we’ll likely use photos that represent the real-life environment of an S7 user.

I hope that provides a brief glimpse into the strategies we use to evaluate workload content in the XPRT benchmarks. Of course, since the BenchmarkXPRT Development Community is an open development community, we’d love to hear your comments or suggestions!

Justin

WebXPRT and user-agent strings

After running WebXPRT in Microsoft Edge, a tester recently asked why the browser information field on the results page displayed “Chrome 52 – Edge 15.15063.” It’s a good question; why would the benchmark report Chrome 52 when Microsoft Edge is the browser under test? The answer lies in understanding user-agent strings and the way that WebXPRT gathers specific bits of information.

When browsers request a web page from a hosting server, they send an array of basic header information that allows the server to determine the client’s capabilities and the best way to provide the requested content. One of these headers, the user-agent, presents a string of tokens that provide information about the application making the request, the operating system and version, rendering engine compatibility, and browser platform details. In effect, the user-agent string is a way for a browser to tell the hosting server the full extent of its capabilities.

When WebXPRT attempts to identify a browser, it references the browser token in the user-agent string.

The process is generally straightforward, but in some cases, browsers spoof information from other browsers in their user-agent strings, which makes accurate browser detection difficult. The reasons for this are complex, but they involve web development practices and the fact that some web pages are not designed to recognize and work well with new or less-popular browsers. When we released WebXPRT 2015, Microsoft Edge was new. The Edge team wanted to make sure that as much advanced web content as possible would be available to Edge users, so they created a user-agent string that declared itself to be several different browsers at once.

I can see this in action if I check Edge’s user-agent string on my system. Currently, it reports “Mozilla/5.0 (Windows NT 10.0; Win64; x64; ServiceUI 9) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063.” So, because of the way Edge’s user-agent string is constructed, and the way WebXPRT parses that information, the browser information field on WebXPRT’s results page will report “Chrome 52 – Edge 15.15063” on my system.

To try this on your system, in Edge, select the ellipses icon in the top right-hand corner, then F12 Developer Tools. Next, select the Console tab, and run “javascript:alert(navigator.userAgent).” A popup window will display the UA string.

You can find instructions for finding the user-agent string in other browsers here: http://techdows.com/2016/07/edge-ie-chrome-firefox-user-agent-strings.html.

In the next version of WebXPRT, we’ll work to refine the way that the test parses user-agent strings, and provide more accurate system information for testers. If you have any questions or suggestions regarding this topic, let us know!

Justin

Best practices

Recently, a tester wrote in and asked for help determining why they were seeing different WebXPRT scores on two tablets with the same hardware configuration. The scores differed by approximately 7.5 percent. This can happen for many reasons, including different software stacks, but score variability can also result from different testing behavior and environments. While some degree of variability is natural, the question provides us with a great opportunity to talk about the basic benchmarking practices we follow in the XPRT lab, practices that contribute to the most consistent and reliable scores.

Below, we list a few basic best practices you might find useful in your testing. While they’re largely in the context of the WebXPRT focus on evaluating browser performance, several of these practices apply to other benchmarks as well.

  • Test with clean images: We use an out-of-box (OOB) method for testing XPRT Spotlight devices. OOB testing means that other than initial OS and browser version updates that users are likely to run after first turning on the device, we change as little as possible before testing. We want to assess the performance that buyers are likely to see when they first purchase the device, before installing additional apps and utilities. This is the best way to provide an accurate assessment of the performance retail buyers will experience. While OOB is not appropriate for certain types of testing, the key is to not test a device that’s bogged down with programs that influence results unnecessarily.
  • Turn off updates: We do our best to eliminate or minimize app and system updates after initial setup. Some vendors are making it more difficult to turn off updates completely, but you should always account for update settings.
  • Get a feel for system processes: Depending on the system and the OS, quite a lot of system-level activity can be going on in the background after you turn it on. As much as possible, we like to wait for a stable baseline (idle) of system activity before kicking off a test. If we start testing immediately after booting the system, we often see higher variability in the first run before the scores start to tighten up.
  • Disclosure is not just about hardware: Most people know that different browsers will produce different performance scores on the same system. However, testers aren’t always aware of shifts in performance between different versions of the same browser. While most updates don’t have a large impact on performance, a few updates have increased (or even decreased) browser performance by a significant amount. For this reason, it’s always worthwhile to record and disclose the extended browser version number for each test run. The same principle applies to any other relevant software.
  • Use more than one data point: Because of natural variability, our standard practice in the XPRT lab is to publish a score that represents the median from at least three to five runs. If you run a benchmark only once, and the score differs significantly from other published scores, your result could be an outlier that you would not see again under stable testing conditions.


We hope those tips will make testing a little easier for you. If you have any questions about the XPRTs, or about benchmarking in general, feel free to ask!

Justin

MobileXPRT: evaluate the performance of your Android device

We recently discussed the capabilities and benefits of TouchXPRT, CrXPRT, BatteryXPRT, and HDXPRT. This week, we’re focusing on MobileXPRT, an app that evaluates how well an Android device handles everyday tasks. Like the other XPRT family benchmarks, MobileXPRT is easy to use. It takes less than 15 minutes to run on most devices, runs relatable workloads, and delivers reliable, objective, and easy-to-understand results.

MobileXPRT includes five performance scenarios (Apply Photo Effects, Create Photo Collages, Create Slideshow, Encrypt Personal Content, and Detect Faces to Organize Photos). By default, the benchmark runs all five tasks and reports individual workload scores and an overall performance score.

MobileXPRT 2015 is the latest version of the app, supporting both 32-bit and 64-bit hardware running Android 4.4 or higher. To test systems running older versions of Android, or to test 32-bit performance on a 64-bit system, you can use MobileXPRT 2013. The results of the two versions are comparable.

MobileXPRT is a useful tool for anyone who wants to compare the performance capabilities of Android phones or tablets. To see test results from a variety of systems, go to MobileXPRT.com and click View Results, where you’ll find scores from many different Android devices.

If you’d like to run MobileXPRT:

Simply download MobileXPRT from MobileXPRT.com or the Google Play Store. The full installer package on MobileXPRT.com, containing both app and test data, is 243 MB. You may also use this link to download the 18 MB MobileXPRT app file, which will download the test data during installation. The MobileXPRT user manual provides instructions for configuring your device and kicking off a test.

If you’d like to dig into the details:

Check out the Exploring MobileXPRT 2015 white paper. In it, we discuss the MobileXPRT development process and details of the individual performance scenarios. We also explain exactly how the benchmark calculates results.

If you’d like to dig even deeper, the MobileXPRT source code is available to members of the BenchmarkXPRT Development Community, so consider joining today. Membership is free for members of any company or organization with an interest in benchmarks, and there are no obligations after joining.

If you haven’t used MobileXPRT before, give it a shot and let us know what you think!

Justin

Check out the other XPRTs:

Forgot your password?