BenchmarkXPRT Blog banner

Category: Cross-platform benchmarks

Understanding AIXPRT results

Last week, we discussed the changes we made to the AIXPRT Community Preview 2 (CP2) download page as part of our ongoing effort to make AIXPRT easier to use. This week, we want to discuss the basics of understanding AIXPRT results by talking about the numbers that really matter and how to access and read the actual results files.

To understand AIXPRT results at a high level, it’s important to revisit the core purpose of the benchmark. AIXPRT’s bundled toolkits measure inference latency (the speed of image processing) and throughput (the number of images processed in a given time period) for image recognition (ResNet-50) and object detection (SSD-MobileNet v1) tasks. Testers have the option of adjusting variables such as batch size (the number of input samples to process simultaneously) to try and achieve higher levels of throughput, but higher throughput can come at the expense of increased latency per task. In real-time or near real-time use cases such as performing image recognition on individual photos being captured by a camera, lower latency is important because it improves the user experience. In other cases, such as performing image recognition on a large library of photos, achieving higher throughput might be preferable; designating larger batch sizes or running concurrent instances might allow the overall workload to complete more quickly.

The dynamics of these performance tradeoffs ensure that there is no single good score for all machine learning scenarios. Some testers might prefer lower latency, while others would sacrifice latency to achieve the higher level of throughput that their use case demands.

Testers can find latency and throughput numbers for each completed run in a JSON results file in the AIXPRT/Results folder. The test also generates CSV results files that are in the same folder. The raw results files report values for each AI task configuration (e.g., ResNet-50, Batch1, on CPU). Parsing and consolidating the raw data can take some time, so we’re developing a results file parsing tool to make the job much easier.

The results parsing tool is currently available in the AIXPRT CP2 OpenVINO – Windows package, and we hope to make it available for more packages soon. Using the tool is as simple as running a single command, and detailed instructions for how to do so are in the AIXPRT OpenVINO on Windows user guide. The tool produces a summary (example below) that makes it easier to quickly identify relevant comparison points such as maximum throughput and minimum latency.

AIXPRT results summary

In addition to the summary, the tool displays the throughput and latency results for each AI task configuration tested by the benchmark. AIXPRT runs each AI task multiple times and reports the average inference throughput and corresponding latency percentiles.

AIXPRT results details

We hope that this information helps to make it easier to understand AIXPRT results. If you have any questions or comments, please feel free to contact us.

Justin

WebXPRT: What would you like to see?

At over 412,000 runs and counting, WebXPRT is our most popular benchmark. From the first release in 2013, it’s been popular with device manufacturers, developers, tech journalists, and consumers because it’s easy to run, it runs on almost anything with a web browser, and it evaluates device performance using the types of web-based tasks that people are likely to encounter on a daily basis.

With each new version of WebXPRT, we analyze browser development trends to make sure the test’s underlying web technologies and workload scenarios adequately reflect the ways people are using their browsers to work and play. BenchmarkXPRT Development Community members can play an important part in that process by sending us feedback on existing tests and suggestions for new workloads to include.

For example, when we released WebXPRT 3, we updated the photo workloads with new images and a deep learning task used for image classification. We also added an optical character recognition task in the Encrypt Notes and OCR scan workload, and combined part of the DNA Sequence Analysis scenario with a writing sample/spell check scenario to simulate online homework in an all-new Online Homework workload.

Consider for a moment what an ideal future version of WebXPRT would look like for you. Are there new web technologies or workload scenarios that you would like to see? Would you be interested in an associated battery life test? Should we include experimental tests? We’re interested in what you have to say, so please feel free to contact us with your thoughts or questions.

If you’re just now learning about WebXPRT, we offer several resources to help you better understand the benchmark and its range of uses. For a general overview of why WebXPRT matters, watch our video titled What is WebXPRT and why should I care? To read more about the details of the benchmark’s development and structure, check out the Exploring WebXPRT 3 white paper. To see WebXPRT 2015 and WebXPRT 3 scores from a wide range of processors, visit the WebXPRT 3 Processor Comparison Chart.

We look forward to hearing from you!

Justin

News on AIXPRT development

(more…)

Improvements to the AIXPRT results table

Over the last few weeks, we’ve gotten great feedback about the kinds of data points people are looking for in AIXPRT results, as well as suggestions for how to improve the AIXPRT results viewer. To make it easier for visitors to find what they’re looking for, we’ve made a number of changes:

  • You can now filter results in categories such as framework, target hardware, batch size, and precision, and can designate minimum throughput and maximum latency scores. When you select a value from a drop-down menu or enter text, the results change immediately to reflect the filter.
  • You can search for variables such as processor vendor or processor speed.
  • The viewer displays eight results per page by default and lets you change this to 16, 48, or Show all.

 

The following features of the viewer, which have been present previously, can help you to navigate more efficiently:

  • Click the tabs at the top of the table to switch from ResNet-50 network results to SSD-MobileNet network results.
  • Click the header of any column to sort the data on that variable. One click sorts A-Z and two clicks sort Z-A.
  • Click the link in the Source column to visit a detailed page on that result. The page contains additional test configuration and system hardware information and lets you download results files.

 

We hope these changes will improve the utility of the results table. We’ll continue to add features to improve the experience. If you have any suggestions, please let us know!

Justin

AIXPRT Community Preview 2 is almost here!

In last week’s blog, we predicted that the second AIXPRT Community Preview (CP2) would be ready for release later this month. Since then, the development process has accelerated, and we now expect to release CP2 as early as tomorrow, May 10.

Those who have access to the existing AIXPRT Community Preview GitHub repository will be able to access CP2 the same way as before. In addition to making the build available on GitHub, we’ll also post CP2 on an AIXPRT tab in the XPRT Members’ Area (login required). If you don’t have a BenchmarkXPRT Development Community membership, please contact us and we’ll help you register.

Testing with AIXPRT CP2 in Ubuntu will be the same as with the first CP, and none of the CP2 changes will affect results. In Windows, testers will be able to use OpenVINO to target a system’s CPU and GPU, and TensorFlow to target CPUs. We’re still investigating ways to support TensorFlow GPU and TensorFlow-TensorRT testing in Windows.

We’re also continuing to work on the improvements to the AIXPRT results viewer that we mentioned last week. We won’t be able to implement all of the changes by tomorrow, but rather than waiting until we’re finished, we’ll be rolling out improvements as they become ready.

We’ll continue to keep everyone up to date with AIXPRT news here in the blog. If you have any questions or comments, please let us know.

Justin

An update on AIXPRT development

It’s been almost two months since the AIXPRT Community Preview went live, and we want to provide folks with a quick update. Community Preview periods for the XPRTs generally last about a month. Because of the complexity of AIXPRT and some of the feedback we’ve received, we plan to release a second AIXPRT Community Preview (CP2) later this month.

One of the biggest additions in CP2 will be the ability to run AIXPRT on Windows. AIXPRT currently requires test systems to run Ubuntu 16.04 LTS. This is fine for testers accustomed to Linux environments, but presents obstacles for those who want to test in a traditional Windows environment. We will not be changing the tests themselves, so this update will not influence existing results from Ubuntu. We plan to make CP2 available for download from the BenchmarkXPRT website for people who don’t wish to deal with GitHub.

Also, after speaking with testers and learning more about the kinds of data points people are looking for in AIXPRT results, we’ve decided to make significant adjustments to the AIXPRT results viewer. To make it easier for visitors to find what they’re looking for, we’ll add filters for key categories such as batch size, toolkit, and latency percentile (e.g., 50th, 90th, 99th), among others. We’ll also allow users to set desired ranges for metrics such as throughput and latency.

Finally, we’re adding a demo mode that displays some images and other information on the screen while a test is running to give users a better idea what is happening. While we haven’t seen results change while running in demo mode, users should not publish demo results or use them for comparison.

We hope to release CP2 in the second half of May and a GA version in mid-June. However, this project has more uncertainties than we usually encounter with the XPRTs, so that timeline could easily change.

We’ll continue to keep everyone up to date with AIXPRT news here in the blog. As always, we appreciate your suggestions. If you have any questions or comments about AIXPRT, please let us know.

Bill

Check out the other XPRTs:

Forgot your password?