BenchmarkXPRT Blog banner

Category: Chrome

An update on CrXPRT support in ChromeOS

CrXPRT users may remember that back in 2022, we discussed the ChromeOS team’s decision to end formal support for Chrome Apps and instead focus on Chrome extensions and Progressive Web Apps. This decision meant that we would not be able to publish any future fixes or updates for CrXPRT 2, although moving forward, we weren’t sure how it would affect the app’s functionality.

After receiving a lot of feedback regarding their original timeline, the ChromeOS team decided to extend Chrome App support for Enterprise and Education account customers through January 2025. Because we publish CrXPRT through a private BenchmarkXPRT developer account, we assumed at the time that the support extension would not apply to CrXPRT.

Recently, the ChromeOS team released new information about their scheduled support timeline. Now, they plan to end formal support for all user-installed Chrome Apps in July 2025 (Chrome 138). In February 2028, the Chrome 168 release will mark the end of life for all Chrome Apps.

The good news is that—in spite of a lack of formal ChromeOS support over the past couple of years—the CrXPRT 2 performance and battery life tests have continued to run without any known issues. As of today, the app functions normally up through the Beta release of ChromeOS version 132.0.6834.52.

We will continue to run the benchmark on a regular basis to monitor functionality, and we will disclose any future issues here in the blog and on CrXPRT.com. We hope the app will continue to run both performance and battery life tests well into the future. However, given the frequency of Chrome updates, it’s difficult for us to predict how long the benchmark will remain viable.

If you have any questions about CrXPRT, please let us know!

Justin

Thinking through a potential WebXPRT 4 battery life test

In recent blog posts, we’ve discussed some of the technical considerations we’re working through on our path toward a future AI-focused WebXPRT 4 auxiliary workload. While we’re especially excited about adding to WebXPRT 4’s AI performance evaluation capabilities, AI is not the only area of potential WebXPRT 4 expansion that we’ve thought about. We’re always open to hearing suggestions for ways we can improve WebXPRT 4, including any workload proposals you may have. Several users have asked about the possibility of a WebXPRT 4 battery life test, so today we’ll discuss what one might look like and some of the challenges we’d have to overcome to make it a reality.

Battery life tests fall into two primary categories: simple rundown tests and performance-weighted tests. Simple rundown tests measure battery life during extreme idle periods and loops of movie playbacks, etc., but do not reflect the wide-ranging mix of activities that characterize a typical day for most users. While they can be useful for performing very specific apples-to-apples comparisons, these tests don’t always give consumers an accurate estimate of the battery life they would experience in daily use.

In contrast, performance-weighted battery life tests, such as the one in CrXPRT 2, attempt to reflect real-world usage. The CrXPRT battery life test simulates common daily usage patterns for Chromebooks by including all the productivity workloads from the performance test, plus video playback, audio playback, and gaming scenarios. It also includes periods of wait/idle time. We believe this mixture of diverse activity and idle time better represents typical real-life behavior patterns. This makes the resulting estimated battery life much more helpful for consumers who are trying to match a device’s capabilities with their real-world needs.

From a technical standpoint, WebXPRT’s cross-platform nature presents us with several challenges that we did not face while developing the CrXPRT battery life test for ChromeOS. While the WebXPRT performance tests run in almost any browser, cross-browser differences and limitations in battery life reporting may restrict any future battery life test to a single browser or browser family. For instance, with the W3C Battery Status API, we can currently query battery status data from non-mobile Chromium-based browsers (e.g., Chrome, Edge, Opera, etc.), but not from Firefox or Safari. If a WebXPRT 4 battery life test supported only a single browser family, such as Chromium-based browsers, would you still be interested in using it? Please let us know.

A browser-based battery life workflow also presents other challenges that we do not face in native client applications, such as CrXPRT:

  • A browser-based battery life test may require the user to check the starting and ending battery capacities, with no way for the app to independently verify data accuracy.
  • The battery life test could require more babysitting in the event of network issues. We can catch network failures and try to handle them by reporting periods of network disconnection, but those interruptions could influence the battery life duration.
  • The factors above could make it difficult to achieve repeatability. One way to address that problem would be to run the test in a standardized lab environment with a steady internet connection, but a long list of standardized environmental requirements would make the battery life test less attractive and less accessible to many testers.

We’re not sharing these thoughts to make a WebXPRT 4 battery life test seem like an impossibility. Rather, we want to offer our perspective on what the test might look like and describe some of the challenges and considerations in play. If you have thoughts about battery life testing, or experience with battery life APIs in one or more of the major browsers, we’d love to hear from you!

Justin

Web APIs: Possible paths for the AI-focused WebXPRT 4 auxiliary workload

In our last blog post, we discussed one of the major decision points we’re facing as we work on what we hope will be the first new AI-focused WebXPRT 4 auxiliary workload: choosing a Web AI framework. In today’s blog, we’re discussing another significant decision that we need to make for the future workload’s development path: choosing a web API.

Many of you are familiar with the concept of an application programming interface (API). Simply put, APIs implement sets of software rules, tools, and/or protocols that serve as intermediaries that make it possible for different computer programs or components to communicate with each other. APIs simplify many development tasks for programmers and provide standardized ways for applications to share data, functions, and system resources.

Web APIs fulfill the intermediary role of an API—through HTTP-based communication—for web servers (on the server side) or web browsers (on the client side). Client-side web APIs make it possible for browser-based applications to expand browser functionality. They execute the kinds of JavaScript, HTML5, and WebAssembly (Wasm) workloads—among other examples—that support the wide variety of browser extensions many of us use every day. WebXPRT uses those types of browser-based workloads to evaluate system performance. To lay a solid foundation for the first future browser-based AI workload, we need to choose a web API that will be compatible with WebXPRT and the Web AI framework and AI inference workload(s) we ultimately choose.

Currently, there are three main web API paths for running AI inference in a web browser: Web Neural Network (WebNN), Wasm, and WebGPU. These three web technologies are in various stages of development and standardization. Each has different levels of support within the major browsers. Here are basic overviews of each of the three options, as well as a few of our thoughts on the benefits and limitations that each may bring to the table for a future WebXPRT AI workload:

  • WebNN is a JavaScript API that enables developers to directly execute machine learning (ML) tasks on neural networks within web-based applications. WebNN makes it easier to integrate ML models into web apps, and it allows web apps to leverage the power of neural processing units (NPUs). WebNN has a lot going for it. It’s hardware-agnostic and works with various ML frameworks. It’s likely to be a major player in future browser-based inference applications. However, as a web standard, WebNN is still in the development stage and is only available in developer previews for Chromium-based browsers. Full default WebNN support could take a year or more.
  • Wasm is a binary instruction format that works across all modern browsers. Wasm provides a sandboxed environment that operates at near-native speeds and takes advantage of common hardware specs across platforms. Wasm’s capabilities offer web developers a great deal of flexibility for running complex client applications in the browser. Simply put, Wasm can help developers adapt their existing code for additional platforms and browser-based applications without requiring extensive code rewrites. Wasm’s flexibility and cross-platform compatibility is one of the reasons that we’ve already made use of Wasm in two existing WebXPRT 4 workloads that feature AI tasks: Organize Album using AI, and Encrypt Notes and OCR Scan. Wasm can also work together with other web APIs, such as WebGPU.
  • WebGPU enables web-based applications to directly access the graphics rendering and computational capabilities of a system’s GPU. The parallel computational abilities of GPUs make them especially well-suited to efficiently handle some of the demands of AI inference workloads, including image-based GenAI workloads or large language models. Google Chrome and Microsoft Edge currently support WebGPU, and it’s available in Safari through a tech preview.

Right now, we don’t think that WebNN will be fully out of the development phase in time to serve as our go-to web API for a new WebXPRT AI workload. Wasm and/or WebGPU appear to our best options for now. When WebNN is fully baked and available in mainstream browsers, it’s possible that we could port any existing Wasm- or WebGPU-based WebXPRT AI workloads to WebNN, which may open the possibility of cross-platform browser-based NPU performance comparisons.

All that said and as we mentioned in our previous post about Web AI frameworks, we have not made any final decisions about a web API or any aspect of the future workload. We’re still in the early stages of this project. We want your input.

If this discussion has sparked web AI ideas that you think would benefit the process, or if you have feedback you’d like to share, please feel free to contact us!

Justin

Updating our WebXPRT 4 browser performance comparisons with new gear

Once or twice per year, we refresh an ongoing series of WebXPRT comparison tests to see if recent updates have reordered the performance rankings of popular web browsers. We published our most recent comparison in January, when we used WebXPRT 4 to compare the performance of five browsers on the same system.

This time, we’re publishing an updated set of comparison scores sooner than we normally would because we chose to move our testing to a newer reference laptop. The previous system—a Dell XPS 13 7930 with an Intel Core i3-10110U processor and 4 GB of RAM—is now several years old. We wanted to transition to a system that is more in line with current mid-range laptops. By choosing to test on a capable mid-tier laptop, our comparison scores are more likely to fall within the range of scores we would see from an typical user today.

Our new reference system is a Lenovo ThinkPad T14s Gen 3 with an Intel Core i7-1270P processor and 16 GB of RAM. It’s running Windows 11 Home, updated to version 23H2 (22631.3527). Before testing, we installed all current Windows updates and tested on a clean system image. After the update process was complete, we turned off updates to prevent any further updates from interfering with test runs. We ran WebXPRT 4 three times each on five browsers: Brave, Google Chrome, Microsoft Edge, Mozilla Firefox, and Opera. In Figure 1 below, each browser’s score is the median of the three test runs.

In our last round of tests—on the Dell XPS 13—the four Chromium-based browsers (Brave, Chrome, Edge, and Opera) produced close scores, with Edge taking a small lead among the four. Each of the Chromium browsers significantly outperformed Firefox, with the slowest of the Chromium browsers (Brave) outperforming Firefox by 13.5 percent.

In this round of tests—on the Lenovo ThinkPad T14s—the scores were very tight, with a difference of only 4 percent between the last-place browser (Brave) and the winner (Chrome). Interestingly, Firefox no longer trailed the four Chromium browsers—it was squarely in the middle of the pack.

Figure 1: The median scores from running WebXPRT 4 three times with each browser on the Lenovo ThinkPad T14s.

Unlike previous rounds that showed a higher degree of performance differentiation between the browsers, scores from this round of tests are close enough that most users wouldn’t notice a difference. Even if the difference between the highest and lowest scores was substantial, the quality of your browsing experience will often depend on factors such as the types of things you do on the web (e.g., gaming, media consumption, or multi-tab browsing), the impact of extensions on performance, and how frequently the browsers issue updates and integrate new technologies, among other things. It’s important to keep such variables in mind when thinking about how browser performance comparison results may translate to your everyday web experience.

Have you tried using WebXPRT 4 to test the speed of different browsers on the same system? If so, we’d love for you to tell us about it! Also, please tell us what other WebXPRT data you’d like to see!

Justin

Up next for WebXPRT 4: A new AI-focused workload!

We’re always thinking about ways to improve WebXPRT. In the past, we’ve discussed the potential benefits of auxiliary workloads and the role that such workloads might play in future WebXPRT updates and versions. Today, we’re very excited to announce that we’ve decided to move forward with the development of a new WebXPRT 4 workload focused on browser-side AI technology!

WebXPRT 4 already includes timed AI tasks in two of its workloads: the Organize Album using AI workload and the Encrypt Notes and OCR Scan workload. These two workloads reflect the types of light browser-side inference tasks that have been available for a while now, but most heavy-duty inference on the web has historically happened in on-prem servers or in the cloud. Now, localized AI technology is growing by leaps and bounds, and the integration of new AI capabilities with browser-based tasks is on the threshold of advancing rapidly.

Because of this growth, we believe now is the time to start work on giving WebXPRT 4 the ability to evaluate new browser-based AI capabilities—capabilities that are likely to become a part of everyday life in the next few years. We haven’t yet decided on a test scenario or software stack for the new workload, but we’ll be working to refine our plan in the coming months. There seems to be some initial promise in emerging frameworks such as ONNX Runtime Web, which allows users to run and deploy web-based machine learning models by using JavaScript APIs and libraries. In addition, new Web APIs like WebGPU (currently supported in Edge, Chrome, and tech preview in Safari) and WebNN (in development) may soon help facilitate new browser-side AI workloads.

We know that many longtime WebXPRT 4 users will have questions about how this new workload may affect their tests. We want to assure you that the workload will be an optional bonus workload and will not run by default during normal WebXPRT 4 tests. As you consider possibilities for the new workload, here are a few points to keep in mind:

  • The workload will be optional for users to run.
  • It will not affect the main WebXPRT 4 subtest or overall scores in any way.
  • It will run separately from the main test and will produce its own score(s).
  • Current and future WebXPRT 4 results will still be comparable to one another, so users who’ve already built a database of WebXPRT 4 scores will not have to retest their devices.
  • Because many of the available frameworks don’t currently run on all browsers, the workload may not run on every platform.

As we research available technologies and explore our options, we would love to hear from you. If you have ideas for an AI workload scenario that you think would be useful or thoughts on how we should implement it, please let us know! We’re excited about adding new technologies and new value to WebXPRT 4, and we look forward to sharing more information here in the blog as we make progress.

Justin

Check out the other XPRTs:

Forgot your password?