BenchmarkXPRT Blog banner

Category: Battery life

Nothing to hide

I recently saw an article in ZDNet by my old friend Steven J. Vaughan-Nichols that talks about how NetMarketShare and StatCounter reported a significant jump in the operating system market shares for Linux and Chrome OS. One frustration Vaughan-Nichols alluded to in the article is the lack of transparency into how these firms calculated market share, so he can’t gauge how reliable they are. Because neither NetMarketShare nor StatCounter disclosed their methods, there’s no sure way for interested observers to verify the numbers. Steven prefers the data from the federal government’s Digital Analytics Program (DAP). DAP makes its data freely available, so you can run your own calculations. Transparency generates trust.

Transparency is a core value for the XPRTs. We’ve written before about how statistics can be misleading. That’s why we’ve always disclosed exactly how the XPRTs calculate performance results, and the way BatteryXPRT calculates battery life. It’s also why we make each XPRT’s source code available to community members. We want to be open and honest about how we do things, and our open development community model fosters the kind of constructive feedback that helps to continually improve the XPRTs.

We’d love for you to be a part of that process, so if you have questions or suggestions for improvement, let us know. If you’d like to gain access to XPRT source code and previews of upcoming benchmarks, today is a great day to join the community!

Eric

Looking for performance clues

We’ve written before about how the operating system and other software can influence test scores and even battery life. Benchmarks like the XPRTs provide overall results, but teasing out which factors affect those results may require some detective work. The key is to collect individual data points as evidence to what may be causing performance changes.

The Apple iOS 11 rollout last month is an excellent example of the effect of software on device performance. Angry tweets started almost immediately after the update, claiming that iOS 11 drained device batteries. iPhone users here at PT experienced similar issues. What was the cause of that performance drop? The hardware remained the same. So, did software cause the problem?

Less than a week after the rollout, Mashable published an explanation of possible causes. The article quotes research from mobile security firm Wandera showing that, for the 50,000 “moderate to heavy iPhone and iPad users” in the study, devices running iOS 11 burned through their battery at much faster rates than the same devices running iOS 10. They cite two possible causes:

    • devices often re-categorize the files stored on them for every new OS install, which may account for some of the battery issues.
    • many apps are not optimized for iOS 11 yet.

 

While these explanations make sense, with a little more digging, we could get closer to actually solving the mystery instead of guessing at the causes. After all, it is also possible that people are using iOS 11 differently from iOS 10. So, how could a dedicated sleuth investigate further? Anyone using benchmarks and hands-on testing to sift through various scenarios and configurations could get us closer to solving this mystery and any other software-based performance anomalies. But it’s a daunting task—changing only one variable at a time and recording the results is like pounding the streets and knocking on doors to solve a case.

In all likelihood, some combination of Apple iOS updates and application changes will improve the battery life for iOS 11. In the meantime, we wish we had an XPRT that could test battery life on iOS. Who knows, maybe some future version of WebXPRT will be able to help in future sleuthing.

Eric

Keeping up with the latest Android news

Ars Technica recently published a deep-dive review of Android 8.0 (Oreo) that contains several interesting tidbits about what the author called “Android’s biggest re-architecture, ever.” After reading the details, it’s hard to argue with that assessment.

The article’s thorough analysis includes a list of the changes Oreo is bringing to the UI, notification settings, locations service settings, and more. In addition to the types of updates that we usually see, a few key points stand out.

  • Project Treble, a complete reworking of Android’s foundational structure intended to increase the speed and efficiency of update delivery
  • A serious commitment to eliminating silent background services, giving users more control over their phone’s resources, and potentially enabling significant gains in battery life
  • Increased machine learning/neural network integration for text selection and recognition
  • A potential neural network API that allows third-party plugins
  • Android Go, a scaled-down version of Android tuned for budget phones in developing markets


There’s too much information about each of the points to discuss here, but I encourage anyone interested in Android development to check out the article. Just be warned that when they say “thorough,” they mean it, so it’s not exactly a quick read.

Right now, Oreo is available on only the Google Pixel and Pixel XL phones, and will not likely be available to most users until sometime next year. Even though widespread adoption is a way off, the sheer scale of the expected changes requires us to adopt a long-term development perspective.

We’ll continue to track developments in the Android world and keep the community informed about any impact that those changes may have on MobileXPRT and BatteryXPRT. If you have any questions or suggestions for future XPRT/Android applications, let us know!

Justin

Notes from the lab

This week’s XPRT Weekly Tech Spotlight featured the Alcatel A30 Android phone. We chose the A30, an Amazon exclusive, because it’s a budget phone running Android 7.0 (Nougat) right out of the box. That may be an appealing combination for consumers, but running a newer OS on inexpensive hardware such as what’s found in the A30 can cause issues for app developers, and the XPRTs are no exception.

Spotlight fans may have noticed that we didn’t post a MobileXPRT 2015 or BatteryXPRT 2014 score for the A30. In both cases, the benchmark did not produce an overall score because of a problem that occurs during the Create Slideshow workload. The issue deals with text relocation and significant changes in the Android development environment.

As of Android 5.0, on 64-bit devices, the OS doesn’t allow native code executables to perform text relocation. Instead, it is necessary to compile the executables using position-independent code (PIC) flags. This is how we compiled the current version of MobileXPRT, and it’s why we updated BatteryXPRT earlier this year to maintain compatibility with the most recent versions of Android.

However, the same approach doesn’t work for SoCs built with older 32-bit ARMv7-A architectures, such as the A30’s Qualcomm Snapdragon 210, so testers may encounter this issue on other devices with low-end hardware.

Testers who run into this problem can still use MobileXPRT 2015 to generate individual workload scores for the Apply Photo Effects, Create Photo Collages, Encrypt Personal Content, and Detect Faces workloads. Also, BatteryXPRT will produce an estimated battery life for the device, but since it won’t produce a performance score, we ask that testers use those numbers for informational purposes and not publication.

If you have any questions or have encountered additional issues, please let us know!

Justin

Learning something new every day

We’re constantly learning and thinking about how the XPRTs can help people evaluate the tech that will soon be a part of daily life. It’s why we started work on a tool to evaluate machine learning capabilities, and it’s why we developed CrXPRT in response to Chromebooks’ growing share of the education sector.

The learning process often involves a lot of tinkering in the lab, and we recently began experimenting with Neverware’s CloudReady OS. CloudReady is an operating system based on the open-source Chromium OS. Unlike Chrome OS, which can run on only Chromebooks, CloudReady can run on many types of systems, including older Windows and OS X machines. The idea is that individuals and organizations can breathe new life into aging hardware by incorporating it into a larger pool of devices managed through a Google Admin Console.

We were curious to see if it worked as advertised, and if it would run CrXPRT 2015. Installing CloudReady on an old Dell Latitude E6430 was easy enough, and we then installed CrXPRT from the Chrome Web Store. Performance tests ran without a hitch. Battery life tests would kick off but not complete, which was not a big surprise because the battery life calls involved were developed specifically for Chrome OS.

So, what role can CrXPRT play with CloudReady, and what are the limitations? CloudReady has a lot in common with Chrome OS, but there are some key differences. One way we see the CrXPRT performance test being useful is for comparing CloudReady devices. Say that an organization was considering adopting CloudReady on certain legacy systems but not on others; CrXPRT performance scores would provide insight into which devices performed better with CloudReady. While you could use CrXPRT to compare those devices to Chromebooks, the differences between the operating systems are significant enough that we cannot guarantee the comparison would be a fair one.

Have you spent any time working with CloudReady, or are there other interesting new technologies you’d like us to investigate? Let us know!

Justin

BatteryXPRT: A quick and reliable way to estimate Android battery life

In the last few weeks, we reintroduced readers to the capabilities and benefits of TouchXPRT and CrXPRT. This week, we’d like to reintroduce BatteryXPRT 2014 for Android, an app that evaluates the battery life and performance of Android devices.

When purchasing a phone or tablet, it’s good to know how long the battery will last on a typical day and how often you’ll need to charge it. Before BatteryXPRT, you had to rely on a manufacturer’s estimate or full rundown tests that perform tasks that don’t resemble the types of things we do with our phones and tablets every day.

We developed BatteryXPRT to estimate battery life reliably in just over five hours, so testers can complete a full evaluation in one work day or while sleeping. You can configure it to run while the device is connected to a network or in Airplane mode. The test also produces a performance score by running workloads that represent common everyday tasks.

BatteryXPRT is easy to install and run, and is a great resource for anyone who wants to evaluate how well an Android device will meet their needs. If you’d like to see test results from a variety of Android devices, go to BatteryXPRT.com and click View Results, where you’ll find scores from many different Android devices.

If you’d like to run BatteryXPRT:

Simply download BatteryXPRT from the Google Play store or BatteryXPRT.com. The BatteryXPRT installation instructions and user manual provide step-by-step instructions for how to configure your device and kick off a test. We designed BatteryXPRT 2014 for Android to be compatible with a wide variety of Android devices, but because there are so many devices on the market, it is inevitable that users occasionally run into problems. In the Tips, tricks, and known issues document, we provide troubleshooting suggestions for issues we encountered during development testing.

If you’d like to learn more:

We offer a full online BatteryXPRT training course that covers almost every aspect of the benchmark. You can view the sections in order or jump to the parts that interest you. We guarantee that you’ll learn something new!

BatteryXPRT 2014 for Android Training Course

If you’d like to dig into the details:

Check out the Exploring BatteryXPRT 2014 for Android white paper. In it, we discuss the app’s development and structure. We also describe the component tests; explain the differences between the test’s Airplane, Wi-Fi, and Cellular modes; and detail the statistical processes we use to calculate expected battery life.

If you’d like to dig even deeper, the BatteryXPRT source code is available to members of the BenchmarkXPRT Development Community, so consider joining today. Membership is free for members of any company or organization with an interest in benchmarks, and there are no obligations after joining.

If you haven’t used BatteryXPRT before, try it out and let us know what you think!

Justin

Check out the other XPRTs:

Forgot your password?