BenchmarkXPRT Blog banner

Category: AI

Recent XPRT mentions in articles, reviews, and more!

Here at the XPRTs, our primary goal is to provide free, easy-to-use benchmark tools that can help everyone—from OEM labs to tech press journalists to individual consumers—understand how well devices will perform while completing everyday computing tasks. We track progress toward that goal in several ways, but one of the most important is how much people use and discuss the XPRTs. When the name of one of our apps appears in an ad, article, or tech review, we call it a “mention.” Tracking mentions helps us gauge our reach.

We occasionally like to share a sample of recent XPRT mentions here in the blog. If you just started following the XPRTs, it may be surprising to see our program’s global reach. If you’re a longtime reader and you’re used to seeing WebXPRT or CrXPRT in major tech press articles, it may be surprising to learn more about overseas tech press publications or see how some government agencies use the XPRTs to make decisions. In any case, we hope you’ll enjoy exploring the links below!

Recent mentions include:

If you’d like to receive monthly updates on XPRT-related news and activity, we encourage you to sign up for the BenchmarkXPRT Development Community newsletter. It’s completely free, and all you need to do to join the newsletter mailing list is let us know! We won’t publish, share, or sell any of the contact information you provide, and we’ll only send you the monthly newsletter and occasional benchmark-related announcements, such as important news about patches or releases.

If you have any questions about the XPRTs, suggestions, or requests for future blog topics, please feel free to contact us.

Justin

Archiving AIXPRT and CloudXPRT

Some of our readers have been following the XPRTs since the early days, and they may remember using legacy versions of benchmarks such as HDXPRT 2014 or WebXPRT 2013. For many years, whenever we released a new version of a benchmark, we would maintain a link to the previous version on the benchmark’s main page. However, as interest in the older versions understandably waned and we stopped formally supporting them, many of those legacy XPRTs stopped working on the latest versions of the operating systems or browsers that we designed them to test. While we wanted to continue to provide a way for users to access those legacy XPRTs, we also wanted to avoid potential confusion for new users who might see links to old versions on our site. We decided that the best solution was to archive older tests in a separate section of the site—the XPRT archive.

Recently, as we discussed XPRT plans for 2025, it became clear that we needed to add AIXPRT and CloudXPRT to the archive. Both benchmarks represent landmark efforts toward our ongoing goal of providing cutting-edge performance assessment tools, but even though a few tech press publications and OEM labs experimented with them, neither benchmark gained enough widespread adoption to justify their continued support. As a result, we decided to focus our resources elsewhere and halt development on both benchmarks. Since then, ongoing updates to their respective software components and target platforms have rendered them largely unusable. By archiving both benchmarks, we hope to avoid any future confusion for visitors who may otherwise try to use them.

Over the coming weeks, we’ll be moving the AIXPRT and CloudXPRT installation packages to the XPRT archive page. We’re grateful to everyone who has used AIXPRT and CloudXPRT in the past, and we apologize for any inconvenience this change may cause.

If you have any questions or concerns about access to either of these benchmarks—or about anything else related to the XPRTs, please let us know

Justin

The XPRTs: What would you like to see in 2025?

If you’re a new follower of the XPRT family of benchmarks, you may not be aware of one of the characteristics of the XPRTs that sets them apart from many benchmarking efforts—our openness and commitment to valuing the feedback of tech journalists, lab engineers, and anyone else that uses the XPRTs on a regular basis. That feedback helps us to ensure that as the XPRTs grow and evolve, the resources we offer will continue to meet the needs of those that use them.

In the past, user feedback has influenced specific aspects of our benchmarks, such as the length of test runs, UI features, results presentation, and the addition or subtraction of specific workloads. More broadly, we have also received suggestions for entirely new XPRTs and ways we might target emerging technologies or industry use cases.

As we look forward to what’s in store for the XPRTs in 2025, we’d love to hear your ideas about new XPRTs—or new features for existing XPRTs. Are you aware of hardware form factors, software platforms, new technologies, or prominent applications that are difficult or impossible to evaluate using existing performance benchmarks? Should we incorporate additional or different technologies into existing XPRTs through new workloads? Do you have suggestions for ways to improve any of the XPRTs or XPRT-related tools, such as results viewers?

We’re especially interested in your thoughts about the next steps for WebXPRT. If our recent blog posts about the potential addition of an AI-focused auxiliary workload, what a WebXPRT battery life test would entail, or possible WebAssembly-based test scenarios have piqued your interest, we’d love to hear your thoughts!

We’re genuinely interested in your answers to these questions and any other ideas you have, so please feel free to contact us. We look forward to hearing your thoughts and working together to figure out how they could help shape the XPRTs in 2025!

Justin

Thinking through a potential WebXPRT 4 battery life test

In recent blog posts, we’ve discussed some of the technical considerations we’re working through on our path toward a future AI-focused WebXPRT 4 auxiliary workload. While we’re especially excited about adding to WebXPRT 4’s AI performance evaluation capabilities, AI is not the only area of potential WebXPRT 4 expansion that we’ve thought about. We’re always open to hearing suggestions for ways we can improve WebXPRT 4, including any workload proposals you may have. Several users have asked about the possibility of a WebXPRT 4 battery life test, so today we’ll discuss what one might look like and some of the challenges we’d have to overcome to make it a reality.

Battery life tests fall into two primary categories: simple rundown tests and performance-weighted tests. Simple rundown tests measure battery life during extreme idle periods and loops of movie playbacks, etc., but do not reflect the wide-ranging mix of activities that characterize a typical day for most users. While they can be useful for performing very specific apples-to-apples comparisons, these tests don’t always give consumers an accurate estimate of the battery life they would experience in daily use.

In contrast, performance-weighted battery life tests, such as the one in CrXPRT 2, attempt to reflect real-world usage. The CrXPRT battery life test simulates common daily usage patterns for Chromebooks by including all the productivity workloads from the performance test, plus video playback, audio playback, and gaming scenarios. It also includes periods of wait/idle time. We believe this mixture of diverse activity and idle time better represents typical real-life behavior patterns. This makes the resulting estimated battery life much more helpful for consumers who are trying to match a device’s capabilities with their real-world needs.

From a technical standpoint, WebXPRT’s cross-platform nature presents us with several challenges that we did not face while developing the CrXPRT battery life test for ChromeOS. While the WebXPRT performance tests run in almost any browser, cross-browser differences and limitations in battery life reporting may restrict any future battery life test to a single browser or browser family. For instance, with the W3C Battery Status API, we can currently query battery status data from non-mobile Chromium-based browsers (e.g., Chrome, Edge, Opera, etc.), but not from Firefox or Safari. If a WebXPRT 4 battery life test supported only a single browser family, such as Chromium-based browsers, would you still be interested in using it? Please let us know.

A browser-based battery life workflow also presents other challenges that we do not face in native client applications, such as CrXPRT:

  • A browser-based battery life test may require the user to check the starting and ending battery capacities, with no way for the app to independently verify data accuracy.
  • The battery life test could require more babysitting in the event of network issues. We can catch network failures and try to handle them by reporting periods of network disconnection, but those interruptions could influence the battery life duration.
  • The factors above could make it difficult to achieve repeatability. One way to address that problem would be to run the test in a standardized lab environment with a steady internet connection, but a long list of standardized environmental requirements would make the battery life test less attractive and less accessible to many testers.

We’re not sharing these thoughts to make a WebXPRT 4 battery life test seem like an impossibility. Rather, we want to offer our perspective on what the test might look like and describe some of the challenges and considerations in play. If you have thoughts about battery life testing, or experience with battery life APIs in one or more of the major browsers, we’d love to hear from you!

Justin

Web APIs: Possible paths for the AI-focused WebXPRT 4 auxiliary workload

In our last blog post, we discussed one of the major decision points we’re facing as we work on what we hope will be the first new AI-focused WebXPRT 4 auxiliary workload: choosing a Web AI framework. In today’s blog, we’re discussing another significant decision that we need to make for the future workload’s development path: choosing a web API.

Many of you are familiar with the concept of an application programming interface (API). Simply put, APIs implement sets of software rules, tools, and/or protocols that serve as intermediaries that make it possible for different computer programs or components to communicate with each other. APIs simplify many development tasks for programmers and provide standardized ways for applications to share data, functions, and system resources.

Web APIs fulfill the intermediary role of an API—through HTTP-based communication—for web servers (on the server side) or web browsers (on the client side). Client-side web APIs make it possible for browser-based applications to expand browser functionality. They execute the kinds of JavaScript, HTML5, and WebAssembly (Wasm) workloads—among other examples—that support the wide variety of browser extensions many of us use every day. WebXPRT uses those types of browser-based workloads to evaluate system performance. To lay a solid foundation for the first future browser-based AI workload, we need to choose a web API that will be compatible with WebXPRT and the Web AI framework and AI inference workload(s) we ultimately choose.

Currently, there are three main web API paths for running AI inference in a web browser: Web Neural Network (WebNN), Wasm, and WebGPU. These three web technologies are in various stages of development and standardization. Each has different levels of support within the major browsers. Here are basic overviews of each of the three options, as well as a few of our thoughts on the benefits and limitations that each may bring to the table for a future WebXPRT AI workload:

  • WebNN is a JavaScript API that enables developers to directly execute machine learning (ML) tasks on neural networks within web-based applications. WebNN makes it easier to integrate ML models into web apps, and it allows web apps to leverage the power of neural processing units (NPUs). WebNN has a lot going for it. It’s hardware-agnostic and works with various ML frameworks. It’s likely to be a major player in future browser-based inference applications. However, as a web standard, WebNN is still in the development stage and is only available in developer previews for Chromium-based browsers. Full default WebNN support could take a year or more.
  • Wasm is a binary instruction format that works across all modern browsers. Wasm provides a sandboxed environment that operates at near-native speeds and takes advantage of common hardware specs across platforms. Wasm’s capabilities offer web developers a great deal of flexibility for running complex client applications in the browser. Simply put, Wasm can help developers adapt their existing code for additional platforms and browser-based applications without requiring extensive code rewrites. Wasm’s flexibility and cross-platform compatibility is one of the reasons that we’ve already made use of Wasm in two existing WebXPRT 4 workloads that feature AI tasks: Organize Album using AI, and Encrypt Notes and OCR Scan. Wasm can also work together with other web APIs, such as WebGPU.
  • WebGPU enables web-based applications to directly access the graphics rendering and computational capabilities of a system’s GPU. The parallel computational abilities of GPUs make them especially well-suited to efficiently handle some of the demands of AI inference workloads, including image-based GenAI workloads or large language models. Google Chrome and Microsoft Edge currently support WebGPU, and it’s available in Safari through a tech preview.

Right now, we don’t think that WebNN will be fully out of the development phase in time to serve as our go-to web API for a new WebXPRT AI workload. Wasm and/or WebGPU appear to our best options for now. When WebNN is fully baked and available in mainstream browsers, it’s possible that we could port any existing Wasm- or WebGPU-based WebXPRT AI workloads to WebNN, which may open the possibility of cross-platform browser-based NPU performance comparisons.

All that said and as we mentioned in our previous post about Web AI frameworks, we have not made any final decisions about a web API or any aspect of the future workload. We’re still in the early stages of this project. We want your input.

If this discussion has sparked web AI ideas that you think would benefit the process, or if you have feedback you’d like to share, please feel free to contact us!

Justin

Web AI frameworks: Possible paths for the AI-focused WebXPRT 4 auxiliary workload

A few months ago, we announced that we’re moving forward with the development of a new auxiliary WebXPRT 4 workload focused on local, browser-side AI technology. Local AI has many potential benefits, and it now seems safe to say that it will be a common fixture of everyday life for many people in the future. As the growth of browser-based inference technology picks up steam, our goal is to equip WebXPRT 4 users with the ability to quickly and reliably evaluate how well devices can handle substantial local inference tasks in the browser.

To reach our goal, we’ll need to make many well-researched and carefully considered decisions along the development path. Throughout the decision-making process, we’ll be balancing our commitment to core XPRT values, such as ease of use and widespread compatibility, with the practical realities of working with rapidly changing emergent technologies. In today’s blog, we’re discussing one of the first decision points that we face—choosing a Web AI framework.

AI frameworks are suites of tools and libraries that serve as building blocks for developers to create new AI-based models and apps or integrate existing AI functions in custom ways. AI frameworks can be commercial, such as OpenAI, or open source, such as Hugging Face, PyTorch, and TensorFlow. Because the XPRTs are available at no cost for users and we publish our source code, open-source frameworks are the right choice for WebXPRT.

Because the new workload will focus on locally powered, browser-based inference tasks, we also need to choose an AI framework that has browser integration capabilities and does not rely on server-side computing. These types of frameworks—called Web AI—use JavaScript (JS) APIs and other web technologies, such as WebAssembly and WebGPU, to run machine learning (ML) tasks on a device’s CPU, GPU, or NPU.

Several emerging Web AI frameworks may provide the compatibility and functionality we need for the future WebXPRT workload. Here are a few that we’re currently researching:

  • ONNX Runtime Web: Microsoft and other partners developed the Open Neural Network Exchange (ONNX) as an open standard for ML models. With available tools, users can convert models from several AI frameworks to ONNX, which can then be used by ONNX Runtime Web. ONNX Runtime Web allows developers to leverage the broad compatibility of ONNX-formatted ML models—including pre-trained vision, language, and GenAI models—in their web applications.
  • Transformers.js: Transformers.js, which uses ONNX Runtime Web, is a JS library that allows users to run AI models from the browser and offline. Transformers.js supports language, computer vision, and audio ML models, among others.
  • MediaPipe: Google developed MediaPipe as a way for developers to adapt TensorFlow-based models for use across many platforms in real-time on-device inference applications such as face detection and gesture recognition. MediaPipe is particularly useful for inference work in images, videos, and live streaming.
  • TensorFlow.js: TensorFlow has been around for a long time, and the TensorFlow ecosystem provides users with a broad variety of models and datasets. TensorFlow is an end-to-end ML solution—training to inference—but with available pre-trained models, developers can focus on inference. TensorFlow.js is an open-source JS library that helps developers integrate TensorFlow with web apps.

We have not made final decisions about a Web AI framework or any aspect of the future workload. We’re still in the research, discussion, and experimentation stages of development, but we want to be transparent with our readers about where we are in the process. In future blog posts, we’ll discuss some of the other major decision points in play.

Most of all, we invite you to join us in these discussions, make recommendations, and give us any other feedback or suggestions you may have, so please feel free to share your thoughts!

Justin

Check out the other XPRTs:

Forgot your password?