A Principled Technologies report: Hands-on testing. Real-world results.

Workstations powered
by Intel can play a vital
role in CPU-intensive
Al developer tasks

The science behind the report:

Workstations powered by Intel
can play a vital role in CPU-
intensive Al developer tasks

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Workstations powered by Intel can play a vital role in CPU-intensive Al
developer tasks.

We concluded our hands-on testing on April 23, 2024. During testing, we determined the appropriate hardware
and software configurations and applied updates as they became available. The results in this report reflect
configurations that we finalized on April 20, 2024 or earlier. Unavoidably, these configurations may not represent
the latest versions available when this report appears.

Our results

To learn more about how we have calculated the wins in this report, go to http://facts.pt/calculating-and-highlighting-wins.
Unless we state otherwise, we have followed the rules and principles we outline in that document.

Table 1: The amount of time, in seconds, each phase of Workflow 1 took using Intel Python and libraries (average of three workstations).

Workflow 1 Load Split Chunk Load embed model DB upload Total

Time to complete on tower 12.9922 5.17E-06 0.0263 1.4284 35.4489 49.8958
workstations (seconds)

Time to complete on mobile 11.0388 6.12E-06 0.0223 1.1806 87.9027 100.1444
workstations (seconds)

Table 2: The amount of time, in seconds, each phase of Workflow 2 took using Intel Python and libraries (average of three workstations).

Workflow 2 Pre-processing Processing Post-processing Total
Time to complete on tower 0.6214 136.5530 0.3064 137.4808
workstations (seconds)
Time to complete on mobile

. 1.3099 265.7100 0.51851 267.5384
workstations (seconds)

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024

https://facts.pt/8xoaOpQ
https://www.principledtechnologies.com
https://facts.pt/8xoaOpQ
https://facts.pt/8xoaOpQ
https://facts.pt/calculating-and-highlighting-wins

Table 3: The amount of time, in seconds, each phase of Workflow 3 took using Intel Python and libraries (average of three

tower workstations).

Workflow 3: Time ModelCheck ModelOpt Inputs Outputs Total

Time to complete using 32-bit FP

precision on tower workstations 0.2788 4.3338 0.3512 47.1547 52.1185
(seconds)

Time to complete using 16-bit FP

precision on tower workstations 0.3048 4.2573 0.3532 33.2730 38.1882

(seconds)

Table 4: The amount of memory each phase of Workflow 3 consumed using Intel Python and libraries (average of three tower workstations).

Workflow 3: Memory usage ModelCheck ModelOpt Inputs Outputs Total
Average memory usage when
using 32-bit FP precision on tower 1.3866 30.7443 30.8535 32.2801 95.2644
workstations (GB)
Average memory usage when
using 16-bit FP precision on tower 1.3869 16.2995 16.4211 18.9202 53.0277
workstations (GB)
Table 5: The amount of time, in seconds, each phase of Workflow 3 took using Intel Python and libraries (average of two
mobile workstations).
Workflow 3: Time ModelCheck ModelOpt Inputs Outputs Total
Time to complete using 32-bit FP
precision on mobile workstations 0.3504 5.7059 0.3770 217.3690 223.8023

(seconds)

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks

May 2024 | 2

System configuration information

Table 6: Detailed configuration information for the mobile workstations we tested.

System configuration information

HP ZBook Fury
16 G10

Lenovo® ThinkPad®
P16 Gen 2

Dell™ Precision™ 7780

BIOS name and version

V96 Ver. 01.04.00

N3TET51W (1.51)

1.10.0

Non-default BIOS settings

None

None

None

Operating system, version / build number

Windows 11 23H2 /
22631.34457

Windows 11 23H2 /
22631.34457

Windows 11 23H2 /
22631.34457

Date of last OS updates / patches applied

4/11/2024

4/11/2024

4/11/2024

Power management policy

OS: best performance

OS: best performance

OS: best performance

Processor

Number of processors

1

1

1

Vendor and model

Intel® Core™ i7-13850HX

Intel Core i9-13980HX

Intel Core i7-13980HX

Performance / Efficient cores (per processor) | 8 /12 8/16 8/12

Fz?;gs:]srr;ce / Efficient logical cores (per 16712 16716 16712

Stepping 1 1 1

Memory module(s)

Total memory in system (GB) 32 64 64

Number of memory modules 2 2 1

Vendor and model Samsung® M425R2GA3BB0- | SK Hynix® Dell
CWMOD HMCG88AGBSAQ95N KP7TJK-HYA-I

Size (GB) 16 32 64

Type PC5-44800 PC5-44800 PC5-44800

Speed (MHz) 5,600 5,600 5,600

Speed running in the system (MHz) 4,000 4,000 5,200

Integrated Graphics

Vendor and model

Intel UHD Graphics for 13*
Gen Intel Processors

Intel UHD Graphics for 13t
Gen Intel Processors

Intel UHD Graphics for 13t
Gen Intel Processors

Driver version

31.0.101.5186

31.0.101.5186

31.0.101.4575

Discrete graphics

Vendor and model

NVIDIA® RTX 2000 Ada
Generation

NVIDIA RTX 5000 Ada
Generation

NVIDIA RTX 4000 Ada
Generation

Driver version

31.0.15.3818

31.0.15.3808

31.0.15.3827

Number of cards

1

1

1

Local storage (type A)

Number of drives

1

Drive vendor and model

Micron® MTFDKBAS512TFH-
1BC1AABHA

Kioxia® KXG8AZNV1T02

Samsung PM9A1

Drive size (GB)

512

1,024

1,024

Drive information (speed, interface, type)

PCle NVMe® SSD

PCle NVMe SSD

PCle NVMe SSD

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks

May 2024 | 3

Table 7: Detailed configuration information for the tower workstations we tested.

System configuration information HP Z8 Fury G5 Lenovo ThinkStation® P7 Dell Precision 7960
BIOS name and version Ué1 Ver. 01.01.27 SODKT14A 1.1.14
Non-default BIOS settings None None None

Operating system, version / build number

Ubuntu 22.04.4 /
5.15.0-105-generic

Ubuntu 22.04.4 /
5.15.0-105-generic

Ubuntu 22.04.4 /
5.15.0-105-generic

Date of last OS updates / patches applied

4/20/2024

4/20/2024

4/20/2024

Power management policy

OS: energy performance
preference set to
performance

OS: energy performance
preference set to
performance

OS: energy performance
preference set to
performance

Processor

Number of processors

1

1

1

Vendor and model

Intel Xeon® w7-3455

Intel Xeon w9-3495X

Intel Xeon w7-3455

Cores (per processor) 24 56 24

Logical cores (per processor) 48 112 48

Core frequency (GHz) 2.5 1.9 2.5

Stepping 6 8 8

Memory module(s)

Total memory in system (GB) 128 128 128

Number of memory modules 8 8 4

Vendor and model SK Hynix Micron SK Hynix
HMCG78MEBRA113N MTC10F1084S1RC48BA1 HMCGB8BAEBRA107N

Size (GB) 16 16 32

Type PC5-38400 PC5-38400 PC5-38400

Speed (MHz) 4,800 4,800 4,800

Speed running in the system (MHz) 4,800 4,800 4,800

Discrete graphics

Vendor and model NVIDIA RTX A4000 N/A (’\é\,/AI?(I)élgl-_r)x A4000

Driver version Not installed Not installed Not installed

Number of cards 1 0 1

Local storage (type A)

Number of drives

1

1

Drive vendor and model

Samsung MZVL21TOHCLR-
00BH1

Samsung MZVL21TOHCLR-
00BL7

SK Hynix PC801

Drive size (GB)

1,024

1,2024

1,024

Drive information (speed, interface, type)

PCle NVMe SSD

PCle NVMe SSD

PCle NVMe SSD

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks

May 2024 | 4

How we tested

Installing the operating system on the tower workstations

1. Install Ubuntu 22.04 LTS on the bare-metal server with the server minimal packages plus OpenSSH server and client.
2. Log into the system.
3. Update the system software:

sudo apt update
sudo apt upgrade
sudo shutdown -r now

4. Log into the system using ssh.
5. Install the Redis vector database:

00="/usr/share/keyrings/redis-archive-keyring.gpg"

curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o $00

sudo chmod 644 $00

echo "deb [signed-by=$00] https://packages.redis.io/deb jammy main" | \
sudo tee /etc/apt/sources.list.d/redis.list

unset o0

sudo apt-get update

sudo apt-get install redis-stack-server

sudo systemctl enable redis-stack-server.service

6. Reboot the workstation:

sudo shutdown -r now

Installing the operating system on the mobile workstations

Log into the Windows 11 system.

Use Windows Update to update the system.
Reboot the laptop.

Log into the system.

Install WSL2:

a ke =

i. Open an Admin terminal.
ii. Install WSL and the Ubuntu 22.04 LTS as the Linux default:

wsl --install --no-launch --distribution Ubuntu-22.04

6. Configure WSL to use more memory.

i. Open a non-admin terminal.
ii. Create and edit the WSL configuration file:

notepad c:\Users\<ACCOUNT>\.wslconfig

iii. Add the following to the file. Uncomment the memory specification line that corresponds to the laptop manufacturer.

[wsl2]
Uncomment the next line for the HP mobile workstation
#memory=24GB

Uncomment the next line for the Dell or Lenovo mobile workstation
#memory=48GB

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 5

iv. Save the file, and start the Ubuntu instance.

wsl

7. Open a terminal to the WSL Ubuntu instance.
8. Update the Ubuntu system software:

sudo apt update
sudo apt upgrade
sudo apt install openssh-client openssh-server

9. Install the Redis vector database:

00="/usr/share/keyrings/redis-archive-keyring.gpg"
curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o $00
sudo chmod 644 $o00

echo "deb [signed-by=$00] https://packages.redis.io/deb jammy main" | \
sudo tee /etc/apt/sources.list.d/redis.list
unset o0

sudo apt-get update
sudo apt-get install redis-stack-server
sudo systemctl enable redis-stack-server.service

10. Reboot the laptop:

sudo shutdown -r now

11. Log into the Windows system, and open an admin terminal.
12. Configure the Windows firewall and network to allow incoming SSH connections:

New-NetFirewallRule -Name sshd -DisplayName 'OpenSSH Server (sshd) for WSL' -Enabled True -Direction
Inbound -Protocol TCP -Action Allow -LocalPort 22

get the IP address for the Ubuntu instance

wsl hostname -I

use this IP addres in the following command

netsh.exe interface portproxy add v4tov4 listenport=22 listenaddress=0.0.0.0 connectport=22
connectaddress=<THE IP ADDRESS FROM THE PREVIOUS COMMAND>

13. Close the admin terminal.
14. Open a non-admin terminal, and start WSL:

wsl

15. Configure the SSH server to start when the Ubuntu instance starts:

sudo systemctl enable sshd.service
sudo systemctl start sshd.service

16. Leave this terminal window open.

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 6

Preparing the Python environment for the workflows

1. Install Anaconda to manage the Python environment. We used its default installation location and configuration.

curl -0 https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_ 64.sh
bash Anaconda3-2024.02-1-Linux-x86_64.sh

conda update conda

conda config --add channels intel

2. Create three Python environments, one for each workflow, and install the optimized Intel Python distribution. We installed additional
CPU-only packages from either the Intel optimized repository or from the default repository.

® For Workflow 1:

conda create -n wfl intelpython3_core python=3.10

conda activate wfl

conda install -c intel -c¢ conda-forge --override-channels \
intel-extension-for-tensorflow=2.15=*cpu* \
intel/label/oneapi::intel-extension-for-pytorch=2.2.0 intel/label/oneapi::pytorch=2.2.0 \
intel/label/oneapi::oneccl bind pt=2.2.0 intel/label/oneapi::torchvision=0.17.0 \
intel/label/oneapi::torchaudio=2.2.0 conda-forge::deepspeed=0.14.0 python=3.10

pip install langchain==0.1.13 pydantic lxml pypdf accelerate langchain-community \
redis sentence-transformers psutil

00="/usr/share/keyrings/redis-archive-keyring.gpg"

curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o $00

sudo chmod 644 $o00

echo "deb [signed-by=$00] https://packages.redis.io/deb jammy main" | \
sudo tee /etc/apt/sources.list.d/redis.list
unset o0

sudo apt-get update

sudo apt-get install redis-stack-server

sudo systemctl enable redis-stack-server.service
sudo systemctl start redis-stack-server.service

* For Workflow 2:

conda create -n wf2 intelpython3 core python=3.10
conda activate wf2
pip install opencv-python

e For Workflow 3:

conda create -n wf3 intelpython3 core python=3.10

conda activate wf3

conda install -c intel -c conda-forge --override-channels \
intel-extension-for-tensorflow=2.15=*cpu* \
intel/label/oneapi::intel-extension-for-pytorch=2.2.0 intel/label/oneapi::pytorch=2.2.0 \
intel/label/oneapi::oneccl bind pt=2.2.0 intel/label/oneapi::torchvision=0.17.0 \
intel/label/oneapi::torchaudio=2.2.0 conda-forge::deepspeed=0.14.0 python=3.10

pip install git+https://github.com/huggingface/accelerate.git
pip install git+https://github.com/huggingface/transformers.git
conda install pillow

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 7

Running Workflow 1

Note: Run this workload (step 5) once before testing to download the necessary data from the internet.

1. Start the Redis database:

sudo systemctl enable redis-stack-server.service

2. Activate the Python environment:

conda activate wfl

3. Download the input documents by running the script docs_download.sh:

eel =

mkdir docs

cd docs

bash ~/docs_download.sh
eel =

4. Clean the operating system's file cache:

‘ echo 3 | sudo tee /proc/sys/vm/drop caches ‘

5. Run the workload. Find the Python script below as wf1.py:

‘ time python wfl.py |& tee wfl-out.txt ‘

6. The system reports how much time each task in the workflow took to complete at the end.
Running Workflow 2
Note: Run this workload (step 5) once before testing to download the necessary data from the Internet.

1. Activate the Python environment:

conda activate wf2

2. Create the directories for the input and processed image files:

mkdir inputs outputs

3. Download the images:

curl -0 https://raw.githubusercontent.com/UCSD-AI4H/COVID-CT/master/Images-processed/CT_COVID.zip
curl -0 https://raw.githubusercontent.com/UCSD-AI4H/COVID-CT/master/Images-processed/CT_NonCOVID.zip
unzip CT_COVID.zip

unzip CT_NonCOVID.zip

mv CT_COVID/* inputs

mv CT_NonCOVID/* inputs

rm -rf CT*

4. Clean the operating system’s file cache:

echo 3 | sudo tee /proc/sys/vm/drop_caches

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 8

5. Run the workload. Find the Python script below as wf2.py:

time python wf2.py |& tee wf2-out.txt

6. The workflow reports the running times for each image as a list of three times in seconds. They are the time necessary to read the
original image and convert it to a format that can be analyzed; the time necessary to analyze the image; and the time necessary to
reformat the result, convert it to PNG format, and save it.

Running Workflow 3
Note: Run this workflow once (step 3) before testing to download the necessary data from the internet.

1. Activate the Python environment:

‘ conda activate wf3 ‘

2. Create the directories.
3. Clean the operating system's file cache:

‘ echo 3 | sudo tee /proc/sys/vm/drop_ caches ‘

4. Run the workload. Find the Python script below as wf3.py:

‘ time python wf3.py |& tee wf3-out.txt ‘

5. The system reports how much time each task in the workflow took to complete at the end.

Scripts

File wf1.py: Python script for Workflow 1

#!/bin/env python3
import time

from langchain.vectorstores.redis import Redis

from langchain.text splitter import RecursiveCharacterTextSplitter
from langchain_ community.document_ loaders import PyPDFDirectoryLoader
from langchain community.embeddings import HuggingFaceEmbeddings

grab PDFs in direfctory docs dir
start_time = time.time ()

docs_dir = "docs/"

loader = PyPDFDirectoryLoader (docs_dir)
data = loader.load()

load_time = time.time() - start_time

chunk the docs

start time = time.time ()

text_splitter = RecursiveCharacterTextSplitter (chunk size=10000, chunk overlap=20)
split time = time.time() - start time

start time = time.time ()

text_chunks = text splitter.split documents (data)

chunk time = time.time() - start time

select embedding model

start_time = time.time ()
embedder = HuggingFaceEmbeddings (model name="msmarco-distilbert-base-v4")
em_time = time.time() - start_time

upload chunks and create the index
start time = time.time ()

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 9

docs_vectorstore = Redis.from documents (
text chunks,
embedding=embedder, # an Embeddings object
redis url="redis://localhost:6379",
index name="idx:faa vss",

upload time = time.time() - start time

print ("PDF _load time {} s".format (load time))
print ("Text Split time {} s".format (split_time))
print ("Text Chunk time {} s".format (chunk time))
print ("Load Embed_time {} s".format (em_time))
print ("DB Upload time {} s".format (upload time))

File docs_download.sh: shell script to download input documents for Workflow 1

#!/bin/bash

declare -A dir file

dir [NCT02593864]=64; dir[NCT01625013]=13; dir[NCT01878253]=53
dir[NCT02034409]1=09; dir[NCT02155257]1=57; dir[NCT02155257a]=57
dir [NCT02560922]=22; dir[NCT02683785]1=85; dir[NCT02683785a]=85
dir [NCT02688400]=00; dir[NCT02713542]=42; dir[NCT02888119]=19
dir[NCT02905240]=40dir [NCT02905240a]=40; dir[NCT03491397]1=97
dir [NCT03780400]=00; dir[NCT04456686]1=86; dir[NCT04456686a]=86
dir[CT04627038]1=38; dir[NCT04627038a]=38

file [NCT02593864]=Prot SAP 000.pdf; file[NCT01625013]=Prot SAP 001.pdf
file[NCT01878253]=Prot_000.pdf; file[NCT02034409]=Prot_SAP_000.pdf

file [NCT02155257]=Prot_000.pdf; file[NCT02155257a]=SAP_001.pdf; file[NCT02560922]=Prot SAP 000.pdf;
file [NCT02683785]=Prot_000.pdf

]
]
]
]

file [NCT02683785a]=SAP_001.
file [NCT02905240]=Prot_000.

file [NCT04456686]=Prot 000.

pdf; file[NCT02688400]=Prot SAP 000.pdf

file [NCT02713542]=Prot_SAP_000.pdf; file[NCT02888119]=Prot SAP_000.pdf

pdf; file[NCT02905240a]=SAP_001.pdf

file [NCT03491397]=Prot_SAP_000.pdf; file[NCT03780400]=Prot_SAP_000.pdf

pdf; file[NCT04456686a]=SAP_001.pdf

file [NCT04627038]=Prot_000.pdf; file[NCT04627038a]=SAP_001.pdf
studies=(NCT02593864 NCT01625013 NCT01878253 NCT02034409 NCT02155257 \
NCT02155257a NCT02560922 NCT02683785 NCT02683785a NCT02688400 NCT02713542 \
NCT02888119 NCT02905240 NCT02905240a NCT03491397 NCT03780400 NCT04456686 \
NCT04456686a NCT04627038 NCT04627038)
url="https://cdn.clinicaltrials.gov/large-docs"

for study in "${studies[@]}"; do
curl "Surl/${dir[S$study]}/$study/S{file[$study]}" -o "${study} ${file[S$study]}"
sleep 1

done

File wf2.py: Python script for Workflow 2

#!/bin/env python

import concurrent.futures
import numpy as np

import cv2

import os

import time

input dir = "inputs"
output_dir = "outputs"

def segment_image (name) :
timings = [0] * 3

start_time = time.time ()
Read in the image
image = cv2.imread(os.path.join(input_dir, name))

Change color to RGB (from BGR)

image = cv2.cvtColor (image, cv2.COLOR_BGR2RGB)

Reshaping the image into a 2D array of pixels and 3 color values (RGB)
pixel vals = image.reshape((-1, 3))

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks

May 2024 | 10

Convert to float type
pixel vals = np.float32 (pixel vals)

timings[0] += time.time() - start_ time

kmeans stopping criteria

criteria = (cv2.TERM CRITERIA EPS + cv2.TERM CRITERIA MAX ITER, 30, 0.95)
start time = time.time ()

then perform k-means clustering with number of clusters defined as 3
perform kmeans with 3 clusters and 1a00 iterations
k =3
retval, labels, centers = cv2.kmeans (
pixel vals, k, None, criteria, 100, cv2.KMEANS RANDOM CENTERS

timings[1l] += time.time() - start time

start_time = time.time ()

convert data into 8-bit wvalues

centers = np.uint8 (centers)

segmented data = centers[labels.flatten()]

reshape data into the original image dimensions

segmented image = segmented data.reshape ((image.shape))
cv2.imwrite (os.path.join (output_dir, name), segmented image)
timings[2] += time.time() - start time

return timings

names = os.listdir (input_dir)
with concurrent.futures.ProcessPoolExecutor () as executor:
for name, timing in zip(names, executor.map (segment_image, names)):
print ("Times for {}: {}".format (name, timing))

File wf3.py: Python script for Workflow 3

#!/bin/env python

import time

import os

import psutil

from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch

from PIL import Image

import requests

pid = os.getpid()
python _process = psutil.Process(pid)
gig =1/ 2.0*%*30

memoryUse = python process.memory info () [0]

print ('Inital memory use: {} GB'.format (memoryUse * gig))

start time = time.time ()

processor = LlavaNextProcessor.from pretrained("llava-hf/llava-vl.6-mistral-7b-hf")
model check = time.time() - start time

memory check = python process.memory info() [0]

start time = time.time ()

model = LlavaNextForConditionalGeneration.from pretrained("llava-hf/llava-vl.6-mistral-7b-hf", torch
dtype=torch.bfloatl6, low cpu mem usage=True)

model.to ("cpu")

model opt = time.time() - start time

memory opt = python_process.memory info () [0]

prepare image and text prompt, using the appropriate prompt template

url= "https://media.nga.gov/iiif/8f29e3c9-a289-4d53-abf0-31la66e9e98fa/full/full/0/default.
jpg?attachment filename=ginevra de%27 benci obverse 1967.6.1.a.jpg"

image = Image.open(requests.get (url, stream=True) .raw)

prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
start_time = time.time ()

inputs = processor (prompt, image, return tensors="pt").to("cpu")
inputs_time = time.time() - start_time

memory inputs = python process.memory info () [0]

autoregressively complete prompt

start time = time.time ()

output = model.generate (**inputs, max new_tokens=100)

output time = time.time() - start time

memory outputs = python_ process.memory_info () [0]

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 11

print (processor.decode (output[0], skip_special tokens=True))
print ("Model Check time {} s".format (model check))
print ("Model Opt__ time {} s".format (model opt))

print ("Inputs time {} s".format (inputs time))

print ("Outputs____ time {} s".format (output_time))

print ("Model Check mem {}{ GB".format (memory check * gig))
print ("Model Opt___ mem {} GB".format (memory opt * gig))
print ("Inputs =~~~ mem {} GB".format (memory inputs * gig))
print ("Outputs_ mem {} GB".format (memory outputs * gig))

Read the report at https://facts.pt/8x0aOpQ 4

This project was commissioned by Intel.

‘ Principled

Technologies®

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:

Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or resullt.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer's sole and exclusive remedies are as set forth herein.

Workstations powered by Intel can play a vital role in CPU-intensive Al developer tasks May 2024 | 12

https://www.principledtechnologies.com
https://facts.pt/8xoaOpQ

